Skip to main content
Log in

The Synergy of Membranotropic Effect of the Two Pla2 Fractions of Macrovipera lebetina obtusa Venom on the Model Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

It is known that snake venoms are a complex of enzymes and proteins and the interaction of different venom components with the membranes could be significantly enhanced in course of their action in an orchestra. The aim of the proposed investigation is to obtain detailed information about the mechanism and topology of two snake venom PLA2 isoforms from the Macrovipera lebetina obtusa venom in the membrane-binding process. We investigated the impact of the interaction on the properties of the model membrane (namely, GUVs and erythrocytes ghost) for each of these isoforms, as well as their synergetic action if they act simultaneously. The 6-lauroyl-2-dimethylaminonaphthalene and 6-propionyl-2-dimethylaminonaphthalene fluorescence probes were used to allow us to determine the membrane polarity more accurately via a generalized polarization function. Our results show that two types of PLA2 bring viscosity reduction in GUVs membrane and the effect became more potent when these PLA2 acts together. Intriguingly, we have not observed any significant difference in the case of the erythrocytes ghost membrane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external fields. Kinetics and application. Progr Colloid PolymSci 89:127–131

    CAS  Google Scholar 

  • Angulo Y, Gutiérrez JM, Soares AM, Cho W, Lomonte B (2005) Myotoxic and cytolytic activities of dimeric Lys49 phospholipase A2 homologues are reduced, but not abolished, by a pH-induced dissociation. Toxicon 46:291–296

    CAS  PubMed  Google Scholar 

  • Arni RK, Ward RJ (1996) Phospholipase A2-a structural review. Toxicon 34:827–841

    CAS  PubMed  Google Scholar 

  • Ashworth LA, Green C (1966) Plasma membranes: phospholipid and sterol content. Science 151:210–211

    CAS  PubMed  Google Scholar 

  • Ayvazyan NM, Ghazaryan NA (2012) Lipid bilayer condition abnormalities following Macroviperalebetinaobtusa snake envenomation. Toxicon 60:607–613

    CAS  PubMed  Google Scholar 

  • Ayvazyan NM, Ghazaryan NA, Zaqarian NA (2012) Electroporation and electropermeabilization of lipid bilayer membranes in the course of snakes’ venom intoxication. J Biophys Chem 3:44–48

    CAS  Google Scholar 

  • Ayvazyan NM, Zaqarian NA, Ghazaryan NA (2012) Molecular events associated with Macroviperalebetinaobtusa and Montiviperaraddei venom intoxication and condition of biomembranes. BBA-Biomembranes 1818:1359–1364

    CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observations of shape changes at the phase transition in phospholipid giant unilamellarvesicles. Biophys J 77:2090–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barucha-Kraszewska J, Kraszewski S, Ramseyer C (2013) Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? Langmuir 29:1174–1182

    CAS  PubMed  Google Scholar 

  • Berg OG, Tsai MD, Gelb MH, Jain MK (2001) Interfacial enzymology: the secreted phospholipase A2-paradigm. Chem Rev 101:2613–2653

    CAS  PubMed  Google Scholar 

  • Blouin CM et al (2016) Glycosylation-dependent IFN-gamma R partitioning in lipid and actin nanodomains is critical for JAK activation. Cell 166:920–934

    CAS  PubMed  Google Scholar 

  • Chong PL (1988) Effects of hydrostatic pressure on the location of Prodan in lipid bilayers and cellular membranes. Biochemistry 27:399–404

    CAS  PubMed  Google Scholar 

  • de Oliveira AHC, Giglio JR, Andrião-Escarso SH, Ito AS, Ward RJ (2001) A pH-induced dissociation of the dimeric form of a lysine 49-phospholipase A2 abolishes Ca2+-independent membrane damaging activity. Biochemistry 40:6912–6920

    PubMed  Google Scholar 

  • Dennis EA, Cao J, Hsu TY, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev 111:6130–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1956) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–230

    Google Scholar 

  • Doley R, Kini RM (2009) Protein complexes in snake venom. Cell Mol Life Sci 66:2851–2871

    CAS  PubMed  Google Scholar 

  • Dubovskii PV, Lesovoy DM, Dubinnyi MA, Konshina AG, Utkin YN, Efremov RG, Arseniev AS (2005) Interaction of three-finger toxins with phospholipid membranes: cytotoxins. Biochem. J. 387:807–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eble JA, Bruckner P, Mayer U (2003) Vipera lebetina venom contains two disintegrins inhibiting laminin-binding beta1 integrins. J BiolChem 278:26488–26496

    CAS  Google Scholar 

  • Ghazaryan NA, Ghulikyan ANM (2013) Morphological changes of proteolipid giant unilamellar vesicles affected by Macrovipera lebetina obtusa venom visualized with fluorescence microscope. J Membr Biol 246:627–632

    CAS  PubMed  Google Scholar 

  • Ghazaryan NA, Ghulikyan L, Kishmiryan A, Andreeva TA, Utkin YN, Tsetlin VL, Lomonte B, Ayvazyan NM (2015) Phospholipases A2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms. Biochimica et Biophysica Acta (BBA)-Biomembranes 188(2):463–468

    Google Scholar 

  • Gubensek F, Kordis D (1997) Venom phospholipase A2 genes and their molecular evolution. In: Kini RM (ed) Venom phospholipase A2 enzymes. Wiley, Chichester, pp 73–95

    Google Scholar 

  • Hauser H, Poupart G (1992) Lipid structure. In: Yagle P (ed) The structure of biological membranes. CRC Press, Boca Raton, Ann Arbor, and London, pp 34–37

    Google Scholar 

  • Heiner AL, Gibbons E, Fairbourn JL, Gonzalez LJ, McLemore CO, Brueseke TJ, Judd AM (2008) Bell effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J 94:3084–3093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannagi R, Koizumi K (1979) Effect of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity. Biochim Biophys Acta 556:423–433

    CAS  PubMed  Google Scholar 

  • Kini RM (ed) (1997) Venom phospholipase A2 enzymes: mechanism. Wiley, Chichester

    Google Scholar 

  • Kisiel DG, Calvete JJ, Katzhendler J, Fertala A, Lazarovici P, Marcinkiewicz C (2004) Structural determinants of the selectivity of KTS-disintegrins for the alpha1beta1 integrin. FEBS Lett 577:478–482

    CAS  PubMed  Google Scholar 

  • Klein C, Pillot T, Chambaz J, Drouet B (2003) Determination of plasma membrane fluidity with a fluorescent analogue of sphingomyelin by FRAP measurement using a standard confocal microscope. Brain Res Brain Res Protocols 11:46–51

    CAS  Google Scholar 

  • Koumanov KS, Quinn PJ, Bereziat G, Wolf C (1998) Cholesterol relieves the inhibitory effect of sphingomyelin on type II secretory phospholipase A2. Biochem J 336:625–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Chong PL (1999) Evidence for a regulatory role of cholesterol superlattices in the hydrolytic activity of secretory phospholipase A2 in lipid membranes. Biochemistry 38:3867–3873

    CAS  PubMed  Google Scholar 

  • Lomonte B, Rangel J (2012) Snake venom Lys49 myotoxins: from phospholipases A2 to non-enzymatic membrane disruptors. Toxicon 60:520–530

    CAS  PubMed  Google Scholar 

  • MacGregor RB, Weber G (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann. N.Y Acad Sci 366:140–154

    CAS  Google Scholar 

  • Mackessy SP (2010) Handbook of venoms and toxins of reptiles. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Marczak A (2009) Fluorescence anisotropy of membrane fluidity probes in human erythrocytes incubated with anthracyclines and glutaraldehyde. Bioelectrochemistry 74:236–239

    CAS  PubMed  Google Scholar 

  • Massey JB, She HS, Pownall HJ (1985) Interfacial properties of model membranes and plasma lipoproteins containing ether lipids. Biochemistry 24:6973–6978

    CAS  PubMed  Google Scholar 

  • Mora-Obando D, Fernández J, Montecucco C, Gutiérrez JM, Lomonte B (2014) Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS ONE 9:e109846

    PubMed  PubMed Central  Google Scholar 

  • Mueller P, Rudin D, Tien H, Wescot T (1962) Reconstruction of cell membranes structure in vitro and its transformation into an excitable system. Nature 194:979–980

    CAS  PubMed  Google Scholar 

  • Oliveira S, Saldanha C (2010) An overview about erythrocyte membrane. Clin Hemorheol Microcirc 44:63–74

    PubMed  Google Scholar 

  • Op den Kamp JA, Kauerz MT, Van Deenen LL (1975) Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states. Biochim Biophys Acta 406:169–177

    CAS  PubMed  Google Scholar 

  • Parasassi T, Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by LAURDAN fluorescence. Biophys J 57(6):1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parasassi T, Loiero M, Raimondi M, Ravagnan G, Gratton E (1993) Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta 1153:143–215

    CAS  PubMed  Google Scholar 

  • Parasassi T, Giusti A, Gratton E, Monaco E, Raimondi M, Ravagnan G, Sapora O (1994) Evidence for an increase in water concentration in bilayers after oxidative damage of phospholipids induced by ionizing radiation. Int J Radiat Biol 65:329–334

    CAS  PubMed  Google Scholar 

  • Parasassi T, Kranowska E, Bagatolli LA, Gratton E (1998) LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–373

    CAS  Google Scholar 

  • Parmahamsa M, Reddy KR, Varadacharyulu N (2004) Changes in composition and properties of erythrocyte membrane in chronic alcoholics. Alcohol Alcohol 39:110–112

    CAS  PubMed  Google Scholar 

  • Pla D, Quesada-Bernat S, Rodríguez Y, Sánchez A, Vargas M, Villalta M, Mesén S, Segura Á, Mustafin DO, Fomina YA, Al-Shekhadat RI, Calvete JJ (2020) Dagestan blunt-nosed viper, Macrovipera lebetina obtusa (Dwigubsky, 1832), venom. Venomics, antivenomics, and neutralization assays of the lethal and toxic venom activities by anti-Macrovipera lebetina turanica and anti-Vipera berus berus antivenoms. Toxicon X 6:100035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richieri GV, Kleinfeld AM (1995) Continuous measurement of phospholipase A2 activity using the fluorescent probe ADIFAB. Anal Biochem 229:256–263

    CAS  PubMed  Google Scholar 

  • Sanchez SA, Bagatolli LA, Gratton E, Hazlett TL (2002) Two-photon view of an enzyme at work: crotalusatrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophys J 82:2232–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz L, Ayvazyan N, Calvete JJ (2008) Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Viperaraddei. J Proteom 71:198–209

    CAS  Google Scholar 

  • Serna JB, Oradd G, Bagatolli LA, Simonsen AC, Marsh D, Lindblom G et al (2009) Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys J 97:1381–1389

    PubMed Central  Google Scholar 

  • Siigur J, Aaspõllu A, Siigur E (2019) Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 158:16–32

    CAS  PubMed  Google Scholar 

  • Tasoulis T, Isbister GK (2017) A review and database of snake venom proteomes. Toxins 8:290–303

    Google Scholar 

  • Tsai IH, Lu PJ, Wang YM, Ho CL, Liaw LL (1995) Molecular cloning and characterization of a neurotoxic phospholipase A2 from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem J 311:895–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Souza TA, Betzel C, Murakami MT, Arni RK (2012) Crystallographic portrayal of different conformational states of a Lys49 phospholipase A2 homologue: insights into structural determinants for myotoxicity and dimeric configuration. Int J Biol Macromol 51(3):209–214

    CAS  PubMed  Google Scholar 

  • Zeng JW, Chong PL (1991) Interaction between pressure and ethanol on the formation of interdigitated DPPC liposomes: a study with Prodan fluorescence. Biochemistry 30:9485–9491

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Armenian National Science and Education Fund (ANSEF) based in New York (Research Grant # NS-biochem-2218) and by the State Committee of Science of the Ministry of Education, Science, Culture and Sport (Grant # 19YR-1F012). We are grateful to Lars Werven from the Max Planck Institute for Experimental Medicine for the performance of the reverse phase HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ghazaryan.

Ethics declarations

Conflict of interest

The authors report that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, N.A., Kishmiryan, A. & Ayvazyan, N.M. The Synergy of Membranotropic Effect of the Two Pla2 Fractions of Macrovipera lebetina obtusa Venom on the Model Membranes. J Membrane Biol 253, 609–616 (2020). https://doi.org/10.1007/s00232-020-00144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00144-z

Keywords

Navigation