Untangling Direct and Domain-Mediated Interactions Between Nicotinic Acetylcholine Receptors in DHA-Rich Membranes

Abstract

At the neuromuscular junction (NMJ), the nicotinic acetylcholine receptor (nAChR) self-associates to give rise to rapid muscle movement. While lipid domains have maintained nAChR aggregates in vitro, their specific roles in nAChR clustering are currently unknown. In the present study, we carried out coarse-grained molecular dynamics simulations (CG-MD) of 1–4 nAChR molecules in two membrane environments: one mixture containing domain-forming, homoacidic lipids, and a second mixture consisting of heteroacidic lipids. Spontaneous dimerization of nAChRs was up to ten times more likely in domain-forming membranes; however, the effect was not significant in four-protein systems, suggesting that lipid domains are less critical to nAChR oligomerization when protein concentration is higher. With regard to lipid preferences, nAChRs consistently partitioned into liquid-disordered domains occupied by the omega-3 (\(\omega\)-3) fatty acid, docosahexaenoic acid (DHA); enrichment of DHA boundary lipids increased with protein concentration, particularly in homoacidic membranes. This result suggests dimer formation blocks access of saturated chains and cholesterol, but not polyunsaturated chains, to boundary lipid sites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120. https://doi.org/10.1152/physrev.00015.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Althoff T, Hibbs RE, Banerjee S, Gouaux E (2014) X-ray structures of glucl in apo states reveal a gating mechanism of cys-loop receptors. Nature 512(7514):333–337. https://doi.org/10.1038/nature13669

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Anholt R, Lindstrom J, Montal M (1980) Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptors from torpedo californica in reconstituted lipid vesicles. Eur J Biochem 109:481–487

    CAS  Article  Google Scholar 

  4. Antollini SS, Barrantes FJ (2016) Fatty acid regulation of voltage- and ligand-gated ion channel function. Front Physiol 7:573. https://doi.org/10.3389/fphys.2016.00573

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baaden M, Marrink SJ (2013) Coarse-grain modelling of protein–protein interactions. Curr Opin Struct Biol 23(6):878–886. https://doi.org/10.1016/j.sbi.2013.09.004

    CAS  Article  PubMed  Google Scholar 

  6. Baenziger JE, Corringer PJ (2011) 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60(1):116–125. https://doi.org/10.1016/j.neuropharm.2010.08.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Baenziger JE, Hénault CM, Therien JPD, Sun J (2015) Nicotinic acetylcholine receptor-lipid interactions: mechanistic insight and biological function. Biochimica Biophysica Acta 1848(9):1806–1817. https://doi.org/10.1016/j.bbamem.2015.03.010

    CAS  Article  Google Scholar 

  8. Baenziger JE, Domville JA, Therien JPD (2017) The role of cholesterol in the activation of nicotinic acetylcholine receptors. Curr Topics Memb 80:95–137. https://doi.org/10.1016/bs.ctm.2017.05.002

    Article  Google Scholar 

  9. Barrantes FJ (2007) Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 103(s1):72–80

    CAS  Article  Google Scholar 

  10. Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275(48):37333–37339

    CAS  Article  Google Scholar 

  11. Barrantes FJ, Bermudez V, Borroni MV, Antollini SS, Pediconi MF, Baier JC, Bonini I, Gallegos C, Roccamo AM, Valles AS, Ayala V, Kamerbeek C (2010) Boundary lipids in the nicotinic acetylcholine receptor microenvironment. J Mol Neurosci 40:87–90. https://doi.org/10.1007/s12031-009-9262-z

    CAS  Article  PubMed  Google Scholar 

  12. Bermudez V, Antollini SS, Nievas GAF, AveldaÒo MI, Barrantes FJ (2010) Partition profile of the nicotinic acetylcholine receptor in lipid domains upon reconstitution. J Lipid Res 51(9):2629–2641

    CAS  Article  Google Scholar 

  13. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128(8):2697–2704. https://doi.org/10.1021/ja0569104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Borroni MV, Vallés AS, Barrantes FJ (2016) The lipid habitats of neurotransmitter receptors in brain. Biochimica Biophysica Acta 1858:2662–2670. https://doi.org/10.1016/j.bbamem.2016.07.005

    CAS  Article  Google Scholar 

  15. Bouzat CB, Barrantes FJ (1993) Effects of long-chain fatty acids on the channel activity of the nicotinic acetylcholine receptor. Recept Channels 1:251–258

    CAS  PubMed  Google Scholar 

  16. Brannigan G, Hénin J, Law R, Eckenhoff R, Klein ML (2008) Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci 105(38):14418–14423

    CAS  Article  Google Scholar 

  17. Breckenridge W, Gombos G, Morgan I (1972) The lipid composition of adult rat brain synaptosomal plasma membranes. Biochimica Biophysica Acta (BBA) 266(3):695–707. https://doi.org/10.1016/0005-2736(72)90365-3

    CAS  Article  Google Scholar 

  18. Brusés JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21(2):504–512

    Article  Google Scholar 

  19. Butler DH, McNamee MG (1993) FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. Biochimica Biophysica Acta (BBA) 1150(1):17–24. https://doi.org/10.1016/0005-2736(93)90116-h

    CAS  Article  Google Scholar 

  20. Campagna J, Fallon J (2006) Lipid rafts are involved in c95 (4, 8) agrin fragment-induced acetylcholine receptor clustering. Neuroscience 138(1):123–132

    CAS  Article  Google Scholar 

  21. Carswell CL, Hénault CM, Murlidaran S, Therien J, Juranka PF, Surujballi JA, Brannigan G, Baenziger JE (2015) Role of the fourth transmembrane helix in the allosteric modulation of pentameric Ligand-Gated ion channels. Structure 23(9):1655–64. https://doi.org/10.1016/j.str.2015.06.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chang HW, Bock E (1977) Molecular forms of acetylcholine receptor: effects of calcium ions and a sulfhydryl reagent on the occurrence of oligomers. Biochemistry 16:4513–4520

    CAS  Article  Google Scholar 

  23. Cheng MH, Xu Y, Tang P (2009) Anionic lipid and cholesterol interactions with \(\alpha 4 \beta 2\) nachr: insights from md simulations. J Phys Chem B 113(19):6964–6970

    CAS  Article  Google Scholar 

  24. Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP (2012) Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 20(6):941–956. https://doi.org/10.1016/j.str.2012.05.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Criado M, Eibl H, Barrantes FJ (1982) Effects of lipids on acetylcholine receptor: essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21(15):3622–3629. https://doi.org/10.1021/bi00258a015

    CAS  Article  PubMed  Google Scholar 

  26. daCosta CJB, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2001) Lipid–protein interactions at the nicotinic acetylcholine receptor. J Biol Chem 277(1):201–208. https://doi.org/10.1074/jbc.m108341200

    Article  PubMed  Google Scholar 

  27. Feller SE (2008) Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids 153(1):76–80. https://doi.org/10.1016/j.chemphyslip.2008.02.013

    CAS  Article  PubMed  Google Scholar 

  28. Fong T, McNamee M (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25(4):830–840

    CAS  Article  Google Scholar 

  29. Fong T, McNamee M (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry. https://doi.org/10.1021/bi00387a020

    Article  PubMed  Google Scholar 

  30. Gahbauer S, Böckmann RA (2016) Membrane-mediated oligomerization of g protein coupled receptors and its implications for gpcr function. Front Physiol 7:494. https://doi.org/10.3389/fphys.2016.00494

    Article  PubMed  PubMed Central  Google Scholar 

  31. Georgieva R, Chachaty C, Hazarosova R, Tessier C, Nuss P, Momchilova A, Staneva G (2015) Docosahexaenoic acid promotes micron scale liquid-ordered domains: a comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. Biochimica Biophysica Acta (BBA) 1848(6):1424–1435. https://doi.org/10.1016/j.bbamem.2015.02.027

    CAS  Article  Google Scholar 

  32. Goose JE, Sansom MS (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 9(4):1003033. https://doi.org/10.1371/journal.pcbi.1003033

    CAS  Article  Google Scholar 

  33. Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53(2):199–237

    CAS  Article  Google Scholar 

  34. Hénin J, Salari R, Murlidaran S, Brannigan G (2014) A predicted binding site for cholesterol on the GABAA receptor. Biophys J 106(9):1938–1949. https://doi.org/10.1016/j.bpj.2014.03.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective cys-loop receptor. Nature 474(7349):54–60

    CAS  Article  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    CAS  Article  Google Scholar 

  37. Ingólfsson HI, Melo MN, Van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, De Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559. https://doi.org/10.1021/ja507832e

    CAS  Article  PubMed  Google Scholar 

  38. Iyer SS, Tripathy M, Srivastava A (2018) Fluid phase coexistence in biological membrane: insights from local nonaffine deformation of lipids. Biophys J 115(1):117–128. https://doi.org/10.1016/j.bpj.2018.05.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Lavandera JV, Saín J, Fariña AC, Bernal CA, González MA (2017) N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain. Nutr Neurosci 20(7):424–435

    CAS  Article  Google Scholar 

  40. Laverty D, Thomas P, Field M, Andersen OJ, Gold MG, Biggin PC, Gielen M, Smart TG (2017) Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.3477

    Article  PubMed  Google Scholar 

  41. Laverty D, Desai R, Uchański T, Masiulis S, Stec WJ, Malinauskas T, Zivanov J, Pardon E, Steyaert J, Miller KW, Aricescu AR (2019) Cryo-em structure of the human 1 3 2 gaba, javax.xml.bind.jaxbelement@18520d8a, receptor in a lipid bilayer. Nature 565:516–520. https://doi.org/10.1038/s41586-018-0833-4

    CAS  Article  PubMed  Google Scholar 

  42. Levental K, Lorent J, Lin X, Skinkle A, Surma M (2016) Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys J. https://doi.org/10.1016/j.bpj.2016.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marchand S, Devillers-Thiéry A, Pons S, Changeux JP, Cartaud J (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22(20):8891–8901

    CAS  Article  Google Scholar 

  44. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Masiulis S, Desai R, Uchañski T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller KW, Aricescu AR (2019) Gabaa receptor signalling mechanisms revealed by structural pharmacology. Nature 565:454–459. https://doi.org/10.1038/s41586-018-0832-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Morales-Perez CL, Noviello CM, Hibbs RE (2016a) X-ray structure of the human \(\alpha 4 \beta 2\) nicotinic receptor. Nature 538(7625):411–415. https://doi.org/10.1038/nature19785

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Morales-Perez CL, Noviello CM, Hibbs RE (2016b) X-ray structure of the human [alpha]4[beta]2 nicotinic receptor. Nature 538(7625):411–415

    CAS  Article  Google Scholar 

  48. Nemecz A, Prevost MS, Menny A, Corringer PJ (2016) Review: emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90:452–470

    CAS  Article  Google Scholar 

  49. Oshikawa J, Toya Y, Fujita T, Egawa M, Kawabe J, Umemura S, Ishikawa Y (2003) Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol 285(3):C567–74. https://doi.org/10.1152/ajpcell.00422.2002

    CAS  Article  PubMed  Google Scholar 

  50. Parton D, Tek A, Baaden M, Sansom M (2013) Formation of raft-like assemblies within clusters of influenza hemagglutinin observed by md simulations. PLoS Comput Biol 9(4):e1003034

    CAS  Article  Google Scholar 

  51. Pato C, Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J (2008) Role of lipid rafts in agrin-elicited acetylcholine receptor clustering. Chemico-Biol Interactions 175(1–3):64–67. https://doi.org/10.1016/j.cbi.2008.03.020

    CAS  Article  Google Scholar 

  52. Perillo VL, Peñalva DA, Vitale AJ, Barrantes FJ, Antollini SS (2016) Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains. Arch Biochem Biophys 591:76–86. https://doi.org/10.1016/j.abb.2015.12.003

    CAS  Article  PubMed  Google Scholar 

  53. Prevost MS, Sauguet L, Nury H, Van Renterghem C, Huon C, Poitevin F, Baaden M, Delarue M, Corringer PJ (2012) A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nat Struct Mol Biol 19(6):642–649

    CAS  Article  Google Scholar 

  54. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P et al (2013) Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. https://doi.org/10.1093/bioinformatics/btt055

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramarao MK, Cohen JB (1998) Mechanism of nicotinic acetylcholine receptor cluster formation by rapsyn. Proc Natl Acad Sci USA 95(7):4007–4012. https://doi.org/10.1073/pnas.95.7.4007

    CAS  Article  PubMed  Google Scholar 

  56. Rüchel R, Watters D, Maelicke A (1981) Molecular forms and hydrodynamic properties of acetylcholine receptor from electric tissue. Eur J Biochem 119:215–223

    Article  Google Scholar 

  57. Sauguet L, Shahsavar A, Poitevin F, Huon C, Menny A, Nemecz A, Haouz A, Changeux JP, Corringer PJ, Delarue M (2014) Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc Natl Acad Sci 111(3):966–971

    CAS  Article  Google Scholar 

  58. Schindler H, Spillecke F, Neumann E (1984) Different channel properties of torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes. Proc Natl Acad Sci USA 81:6222–6226

    CAS  Article  Google Scholar 

  59. Scott KA, Bond PJ, Ivetac A, Chetwynd AP, Khalid S, Sansom MSP (2008) Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16(4):621–630. https://doi.org/10.1016/j.str.2008.01.014

    CAS  Article  Google Scholar 

  60. Shaikh SR, Dumaual AC, Castillo A, Locascio D, Siddiqui RA, Stillwell W, Wassall SR (2004) Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative nmr, dsc, afm, and detergent extraction study. Biophys J 87(3):1752–1766. https://doi.org/10.1529/biophysj.104.044552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Sharp L, Salari R, Brannigan G (2019) Boundary lipids of the nicotinic acetylcholine receptor: spontaneous partitioning via coarse-grained molecular dynamics simulation. Biochimica Biophysica. https://doi.org/10.1016/j.bbamem.2019.01.005

    Article  Google Scholar 

  62. Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 136(2):725–732. https://doi.org/10.1021/ja4105667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J (2006) Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in c2c12 myotubes. J Lipid Res 47(10):2121–2133

    CAS  Article  Google Scholar 

  64. Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta 1108(2):240–246. https://doi.org/10.1016/0005-2736(92)90031-G

    CAS  Article  PubMed  Google Scholar 

  65. Turk HF, Chapkin RS (2013) Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukotrienes Essential Fatty Acids. https://doi.org/10.1016/j.plefa.2012.03.008

    Article  Google Scholar 

  66. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346(4):967–989. https://doi.org/10.1016/j.jmb.2004.12.031

    CAS  Article  PubMed  Google Scholar 

  67. Unwin N (2017) Segregation of lipids near acetylcholine-receptor channels imaged by cryo-em. IUCrJ 4:393–399. https://doi.org/10.1107/S2052252517005243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Wassall SR, Stillwell W (2008) Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem Phys Lipids 153:57–63

    CAS  Article  Google Scholar 

  69. Wenz JJ, Barrantes FJ (2005) Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 44(1):398–410

    CAS  Article  Google Scholar 

  70. Willmann R, Pun S, Stallmach L, Sadasivam G, Santos AF et al (2006) Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO J 25(17):4050–4060

    CAS  Article  Google Scholar 

  71. Yadav RS, Tiwari NK (2014) Lipid integration in neurodegeneration: an overview of Alzheimer’s Disease. Mol Neurobiol 50:168–76

    CAS  Article  Google Scholar 

  72. Yeagle PL (2016) Chapter 7-structures of lipid assemblies. pp 115–154

    Google Scholar 

  73. Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26(18):4841–4851. https://doi.org/10.1523/JNEUROSCI.2807-05.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Zingsheim HP, Neugebauer DC, Frank J, Hänicke W, Barrantes FJ (1982) Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy. EMBO J 1:541–547

    CAS  Article  Google Scholar 

  75. Zuber B, Unwin N (2013) Structure and superorganization of acetylcholine receptor-rapsyn complexes. Proc Natl Acad Sci USA 110(26):10622–7. https://doi.org/10.1073/pnas.1301277110

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

GB was supported by research Grants NSF MCB1330728 and NIH P01GM55876. GB and LM were also supported through a Grant from the Research Corporation for Scientific Advancement. This project was supported with computational resources from the National Science Foundation XSEDE program through allocation NSF-MCB110149, a local cluster funded by NSF-DBI1126052, the Rutgers University Office of Advanced Research Computing (OARC) and the Rutgers Discovery Informatics Institute (RDI2), which is supported by Rutgers and the State of New Jersey. We are grateful to Dr. Jérôme Hénin for his helpful suggestions throughout this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grace Brannigan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This research was supported in part by the National Science Foundation, the National Institutes of Health, and the Research Corporation for Scientific Advancement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woods, K., Sharp, L. & Brannigan, G. Untangling Direct and Domain-Mediated Interactions Between Nicotinic Acetylcholine Receptors in DHA-Rich Membranes. J Membrane Biol 252, 385–396 (2019). https://doi.org/10.1007/s00232-019-00079-0

Download citation

Keywords

  • Nicotinic acetylcholine receptor (nAChR)
  • Polyunsaturated fatty acids (PUFAs)
  • Domain formation
  • Lipid–protein interactions
  • Lipid rafts
  • Docosahexaenoic acid (DHA)