Skip to main content
Log in

Revealing a Dual Role of Ganglioside Lipids in the Aggregation of Membrane-Associated Islet Amyloid Polypeptide

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Amyloid formation of the human islet amyloid polypeptide (hIAPP) correlates with a loss of insulin-producing beta cells in patients with type II diabetes mellitus. In this study, we investigated the binding of hIAPP to bilayers consisting of ganglioside lipids and dioleoylphosphatidylcholine (DOPC), which is a physiologically relevant lipid species for pancreatic beta cell-associated aggregation. The membrane interactions are studied computationally using a combination of coarse-grained, umbrella sampling, and atomistic molecular dynamics simulations. Herein, we demonstrate how the hIAPP peptides accumulate in the areas with a high content of ganglioside lipids. We have characterized two distinct binding modes of hIAPP on ganglioside-rich membranes, with both binding modes formed due to electrostatic interaction between the cationic peptides and the anionic ganglioside headgroup. We observed that binding in the ganglioside headgroup region induced conformational changes of the peptide towards an aggregation prone conformation, rich in β-strands. In contrast, the binding of hIAPP near the ganglioside-enriched areas mobilizes the peptide, preventing it from conformational changes and potentially shields it from interactions with other peptides. This suggests a dual role of ganglioside lipids, affecting the aggregation of hIAPP by either accelerating or inhibiting amyloid formation depending on the membrane binding and the ganglioside concentration.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Google Scholar 

  • Ahmed MC, Papaleo E, Lindorff-Larsen K (2018) How well do force fields capture the strength of salt bridges in proteins? PeerJ 6:e4967

    PubMed  PubMed Central  Google Scholar 

  • Amaro M, Šachl R, Aydogan G, Mikhalyov II, Vácha R, Hof M (2016) GM1 ganglioside inhibits β-amyloid oligomerization induced by sphingomyelin. Angew Chem Int Ed 55:9411–9415

    CAS  Google Scholar 

  • Anguiano M, Nowak RJ, Lansbury PT (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JP, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    PubMed  Google Scholar 

  • Caillon L, Lequin O, Khemtémourian L (2013) Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation. Biochimica et Biophysica Acta (BBA)-Biomembranes 1828:2091–2098

    CAS  Google Scholar 

  • Calamai M, Pavone FS (2013) Partitioning and confinement of GM1 ganglioside induced by amyloid aggregates. FEBS Lett 587:1385–1391

    CAS  PubMed  Google Scholar 

  • de Jong DH et al (2013) Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput 9:687–697

    PubMed  Google Scholar 

  • Dotta F et al (1989) Ganglioside expression in human pancreatic islets. Diabetes 38:1478–1483

    CAS  PubMed  Google Scholar 

  • Dupuis NF, Wu C, Shea JE, Bowers MT (2011) The amyloid formation mechanism in human IAPP: dimers have β-strand monomer-monomer interfaces. J Am Chem Soc 133:7240–7243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel MFM et al (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci USA 105:6033–6038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  • Fu L, Wang Z, Batista VS, Yan ECY (2015) New insights from sum frequency generation vibrational spectroscopy into the interactions of islet amyloid polypeptides with lipid membranes. J Diabetes Res. https://doi.org/10.1155/2016/7293063

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18:2112–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu R-X, Ingólfsson HI, DeVries AH, Marrink SJ, Tieleman DP (2016) Ganglioside-lipid and ganglioside-protein interactions revealed by coarse-grained and atomistic molecular dynamics simulations. J Phys Chem B 121(15):3262–3275

    PubMed  PubMed Central  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    CAS  Google Scholar 

  • Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158

    Google Scholar 

  • Hoffmann KQ, McGovern M, Chiu CC, de Pablo JJ (2015) Secondary structure of rat and human amylin across force fields. PLoS ONE 10:e0134091

    PubMed  PubMed Central  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A: At, Mol, Opt Phys 31:1695–1697

    CAS  Google Scholar 

  • Höppener JWM, Ahrén B, Lips CJM (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343:411–419

    PubMed  Google Scholar 

  • Javanainen M, Martinez-Seara H, Vattulainen I (2017) Excessive aggregation of membrane proteins in the Martini model. PLoS ONE 12:e0187936

    PubMed  PubMed Central  Google Scholar 

  • Jayasinghe SA, Langen R (2005) Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44:12113–12119

    CAS  PubMed  Google Scholar 

  • Jayasinghe SA, Langen R (2007) Membrane interaction of islet amyloid polypeptide. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768:2002–2009

    CAS  Google Scholar 

  • Jurgens CA et al (2011) β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  • Khemtémourian L, Doménech E, Doux JPF, Koorengevel MC, Killian JA (2011) Low pH acts as inhibitor of membrane damage induced by human islet amyloid polypeptide. J Am Chem Soc 133:15598–15604

    PubMed  Google Scholar 

  • Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187

    CAS  PubMed  Google Scholar 

  • Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508

    CAS  PubMed  Google Scholar 

  • Knight JD, Williamson JA, Miranker AD (2008) Interaction of membrane-bound islet amyloid polypeptide with soluble and crystalline insulin. Protein Sci 17:1850–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koldsø H, Shorthouse D, Hélie J, Sansom MSP (2014) Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput Biol 10:e1003911

    PubMed  PubMed Central  Google Scholar 

  • Last NB, Rhoades E, Miranker AD (2011) Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity. Proc Natl Acad Sci USA 108:9460–9465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laude AJ, Prior IA (2004) Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol 21:193–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-C, Sun Y, Huang HW (2012) How type II diabetes-related islet amyloid polypeptide damages lipid bilayers. Biophys J 102:1059–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemkul JA, Bevan DR (2011) Lipid composition influences the release of Alzheimer’s amyloid β-peptide from membranes. Protein Sci 20:1530–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • López CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ (2013) Martini force field parameters for glycolipids. J Chem Theory Comput 9:1694–1708

    PubMed  Google Scholar 

  • Luca S, Yau W-M, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46:13505–13522

    CAS  PubMed  Google Scholar 

  • Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the b cell secretory granules of the human pancreatic-islets. Diabetologia 32:240–244

    CAS  PubMed  Google Scholar 

  • Lutz TA (2012) Control of energy homeostasis by amylin. Cell Mol Life Sci 69:1947–1965

    CAS  PubMed  Google Scholar 

  • Maloy AL, Longnecker DS, Robert Greenberg E (1981) The relation of islet amyloid to the clinical type of diabetes. Hum Pathol 12:917–922

    CAS  PubMed  Google Scholar 

  • Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS ONE 8:e71308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    CAS  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    CAS  PubMed  Google Scholar 

  • Mirecka EA, Feuerstein S, Gremer L, Schröder GF, Stoldt M, Willbold D, Hoyer W (2016) β-Hairpin of islet amyloid polypeptide bound to an aggregation inhibitor. Sci Rep 6:33474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992

    CAS  PubMed  Google Scholar 

  • Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62:2283–2294

    CAS  PubMed  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    CAS  PubMed  Google Scholar 

  • Nanga RPR, Brender JR, Vivekanandan S, Ramamoorthy A (2011) Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochimica Et Biophysica Acta-Biomembranes 1808:2337–2342

    CAS  Google Scholar 

  • Páll S, Hess B (2013) A flexible algorithm for calculating pair interactions on SIMD architectures. Comput Phys Commun 184:2641–2650

    Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    CAS  Google Scholar 

  • Periole X (2013) Is it possible to calculate salt-bridges in Martini? http://www.cgmartini.nl/index.php/component/kunena/10-other/1459-is-it-possible-to-calculate-salt-bridges-in-martini. Accessed 13 Jan 2019

  • Piana S, Lindorff-Larsen K, Shaw David E (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L47–L49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quist A et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS et al (2010) Stable and metastable states of human amylin in solution. Biophys J 99:2208–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito M, Ito M, Sugiyama K (1999) A specific loss of c-series gangliosides in pancreas of streptozotocin-induced diabetic rats. Life Sci 64:1803–1810

    CAS  PubMed  Google Scholar 

  • Sasahara K, Hall D, Hamada D (2010) Effect of lipid type on the binding of lipid vesicles to islet amyloid polypeptide amyloid fibrils. Biochemistry 49:3040–3048

    CAS  PubMed  Google Scholar 

  • Sasahara K, Morigaki K, Okazaki T, Hamada D (2012) Binding of islet amyloid polypeptide to supported lipid bilayers and amyloid aggregation at the membranes. Biochemistry 51:6908–6919

    CAS  PubMed  Google Scholar 

  • Scalisi S, Sciacca MFM, Zhavnerko G, Grasso DM, Marletta G, La Rosa C (2010) Self-assembling pathway of hIAPP fibrils within lipid bilayers. ChemBioChem 11:1856–1859

    CAS  PubMed  Google Scholar 

  • Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg C-P, Sikora M (2017) Overcoming the limitations of the MARTINI force field in simulations of polysaccharides. J Chem Theory Comput 13:5039–5053

    CAS  PubMed  Google Scholar 

  • Segrest JP, Jackson RL, Morrisett JD, Gotto AM (1974) A molecular theory of lipid—protein interactions in the plasma lipoproteins. FEBS Lett 38:247–253

    CAS  PubMed  Google Scholar 

  • Singh S, Chiu C-c, Reddy AS, de Pablo JJ (2013) α-Helix to β-hairpin transition of human amylin monomer. J Chem Phys 138:155101

    PubMed  PubMed Central  Google Scholar 

  • Sparr E et al (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120

    CAS  PubMed  Google Scholar 

  • Steinbach PJ, Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem 15:667–683

    CAS  Google Scholar 

  • Stumvoll M, Goldstein BJ, van Haeften TW (2007) Pathogenesis of type 2 diabetes. Endocr Res 32:19–37

    CAS  PubMed  Google Scholar 

  • Terzi E, Hölzemann G, Seelig J (1997) Interaction of Alzheimer β-amyloid peptide (1–40) with lipid membranes. Biochemistry 36:14845–14852

    CAS  PubMed  Google Scholar 

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    CAS  Google Scholar 

  • Wahlström A, Hugonin L, Perálvarez-Marín A, Jarvet J, Gräslund A (2008) Secondary structure conversions of Alzheimer’s Aβ (1–40) peptide induced by membrane-mimicking detergents. FEBS J 275:5117–5128

    PubMed  Google Scholar 

  • Wakabayashi M, Matsuzaki K (2009) Ganglioside-induced amyloid formation by human islet amyloid polypeptide in lipid rafts. FEBS Lett 583:2854–2858

    CAS  PubMed  Google Scholar 

  • Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10:676–690

    CAS  PubMed  Google Scholar 

  • Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155

    CAS  PubMed  Google Scholar 

  • Westermark P (1995) Islet amyloid polypeptide and amyloid in the islets of Langerhans. In: Leslie RDG, Robbins D (eds) Diabetes: clinical science in practice. Cambridge Univ. Press, Cambridge, pp 189–199

    Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    CAS  PubMed  Google Scholar 

  • Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26:19–39

    PubMed  PubMed Central  Google Scholar 

  • Williamson JA, Miranker AD (2007) Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Sci 16:110–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson JA, Loria JP, Miranker AD (2009) Helix stabilization precedes aqueous and bilayer-catalyzed fiber formation in islet amyloid polypeptide. J Mol Biol 393:383–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6:e1000810

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, St Clair JR, London E, Raleigh DP (2017) Islet amyloid polypeptide membrane interactions: effects of membrane composition. Biochemistry 56:376–390

    CAS  PubMed  Google Scholar 

  • Zhao HL, Lai FMM, Tong PCY, Zhong DR, Yang D, Tomlinson B, Chan JCN (2003) Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes 52:2759–2766

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Computations were performed at the Grendel cluster of the Centre for Scientific Computing Aarhus (CSCAA), Aarhus University and at the Abacus 2.0 of the DeIC National HPC Centre, University of Southern Denmark. Dr. Xavier Periole is thanked for fruitful discussions.

Funding

Funding was provided by Lundbeckfonden (Grant No. R191-2015-827) and by Sino-Danish Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Schiøtt.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All co-authors have agreed to submission and we state that the results have neither previously been made publicly available, nor are they under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, M., Schiøtt, B. Revealing a Dual Role of Ganglioside Lipids in the Aggregation of Membrane-Associated Islet Amyloid Polypeptide. J Membrane Biol 252, 343–356 (2019). https://doi.org/10.1007/s00232-019-00074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00074-5

Keywords

Navigation