Skip to main content
Log in

Ferutinin Induces Membrane Depolarization, Permeability Transition Pore Formation, and Respiration Uncoupling in Isolated Rat Liver Mitochondria by Stimulation of Ca2+-Permeability

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

It is well known that the terpenoid ferutinin (4-oxy-6-(4-oxybenzoyloxy) dauc-8,9-en), isolated from the plant Ferula tenuisecta, considerably increases the permeability of artificial and cellular membranes to Ca2+-ions and produces apoptotic cell death in different cell lines in a mitochondria-dependent manner. The present study was designed for further evaluation of the mechanism(s) of mitochondrial effects of ferutinin using isolated rat liver mitochondria. Our findings provide evidence for ferutinin at concentrations of 5–27 µM to decrease state 3 respiration and the acceptor control ratio in the case of glutamate/malate as substrates. Ferutinin alone (10–60 µM) also dose-dependently dissipated membrane potential. In the presence of Ca2+-ions, ferutinin (10–60 µM) induced considerable depolarization of the inner mitochondrial membrane, which was partially inhibited by EGTA, and permeability transition pore formation, which was diminished partly by cyclosporin A, and did not influence markedly the effect of Ca2+ on mitochondrial respiration. Ruthenium Red, a specific inhibitor of mitochondrial calcium uniporter, completely inhibited Ca2+-induced mitochondria swelling and membrane depolarization, but did not affect markedly the stimulation of these Ca2+-dependent processes by ferutinin. We concluded that the mitochondrial effects of ferutinin might be primarily induced by stimulation of mitochondrial membrane Ca2+-permeability, but other mechanisms, such as driving of univalent cations, might be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACR:

Acceptor control ratio

CsA:

Cyclosporin A

MCU:

Mitochondrial calcium uniporter

MPT:

Mitochondrial permeability transition

ROS:

Reactive oxygen species

Ru red:

Ruthenium red

FCCP:

Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazine

References

  • Abramov AY, Duchen MR (2003) Action of ionomycin, 4-BrA23187 and novel electrogenic Ca2+ ionophore on mitochondria in intact cells. Cell Calcium 33:101–112

    Article  PubMed  CAS  Google Scholar 

  • Abramov AY, Zamaraeva MV, Hagelgans AI, Azimov RR, Krasilnikov OV (2001) Influence of plant terpenoids on the permeability of mitochondria and lipid bilayers. Biochim Biophys Acta 1512(1):98–110

    Article  PubMed  CAS  Google Scholar 

  • Akerman KEO, Wikström MKF (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 6:191–197

    Article  Google Scholar 

  • Amin A, Gali-Muhtasib H, Osker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci 5(1):1–11

    PubMed  PubMed Central  CAS  Google Scholar 

  • Arghiani N, Matin MM, Bahrami AR, Iranshashi M, Sazgarnia A, Rassouli FB (2014) Investigating anticancer properties of the sesquiterpene ferutinin on colon carcinoma cells, in vitro and in vivo. Life Sci 109:87–94

    Article  PubMed  CAS  Google Scholar 

  • Azzolin L, Stockum S, Basso E, Petronilli V, Forte M, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584:2504–2509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baranov SV, Stavrovskaya IG, Brown AM, Tyryshkin AM, Kristal BS (2008) Kinetic model for Ca2+-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms. J Biol Chem 283:665–676

    Article  PubMed  CAS  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of cancer chemotherapy. J Natl Cancer Inst 92(13):1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Colman-Saizarbitoria T, Boutros P, Amesty A, Bahsas A, Mathison Y, Garrido Mdel R, Israel A (2006) Ferutinin stimulates nitric oxide synthase activity in median eminence of the rat. J Ethnopharmacol 106:327–332

    Article  PubMed  CAS  Google Scholar 

  • Dalla Via L, Garcia-Argaez AN, Martinez-Vazquez M, Grancara S, Martinis P, Toninello A (2014) Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des 20:223–244

    Article  PubMed  CAS  Google Scholar 

  • Dall’ Acqua S, Linardi MA, Maggi F, Nicoletti M, Petitto V, Innocenti G, Basso G, Viola G (2011) Natural daucane sesquiterpenes with antiproliferative activity against human tumor cells. Bioorg Med Chem 19:5876–5885

    Article  CAS  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dremza IK, Lapshina EA, Kujawa J, Zavodnik IB (2006) Oxygen-related processes in red blood cells exposed to tert-butyl hydroperoxide. Redox Rep 11:185–192

    Article  PubMed  CAS  Google Scholar 

  • Dubis A, Zamaraeva MV, Siergiejczyk L, Charishnikova O, Shlyonsky V (2015) Ferutinin as a Ca(2+) complexone: lipid bilayers, conductometry, FT-IR, NMR studies and DFT-B3LYP calculations. Dalton Trans 44(37):16506–16515

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25(4):365–451

    Article  PubMed  CAS  Google Scholar 

  • Ferretti M, Bertoni L, Cavani F, Benincasa M, Sena P, Carnevale G, Zavatti M, Viesti VD, Zanoli P, Palumbo C (2012) Structural and histomorphometric evaluations of ferutinin effects on the uterus of ovariectomized rats during osteoporosis treatment. Life Sci 90(3–4):161–168

    Article  PubMed  CAS  Google Scholar 

  • Ferretti M, Cavani F, Manni P, Carnevale G, Bertoni L, Zavatti M, Palumbo C (2014) Ferutinin dose-dependent effects on uterus and mammary gland in ovariectomized rats. Histol Histopathol 29(8):1027–1037

    PubMed  CAS  Google Scholar 

  • Fulda S (2010) Modulation of apoptosis by natural products for cancer therapy. Planta Med 76(11):1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Wong SY, Lau PM, Kong SK (2013) Ferutinin induces in vitro eryptosis/erythroptosis in human erythrocytes through membrane permeabilization and calcium influx. Chem Res Toxicol 26(8):1218–1228

    Article  PubMed  CAS  Google Scholar 

  • Geroushi A, Auzi AA, Elhwuegi AS, Elzawam F, Berretu A, Hanar L, Sarker SD (2011) Antiinflammatory sesquiterpenes from the root oil of Ferula hermonis. Phytother Res 25:774–777

    Article  PubMed  CAS  Google Scholar 

  • Golovach NG, Cheshchevik VT, Lapshina EA, Ilyich TB, Zavodnik IB (2017) Calcium-induced mitochondrial permeability transitions: parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. J Memb Biol 250:225–236

    Article  CAS  Google Scholar 

  • Gorlach S, Fichna J, Lewandowska U (2015) Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett 366:141–149

    Article  PubMed  CAS  Google Scholar 

  • Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, Madesh M (2014) SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 25:936–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Ignatkov V, Akhmedkhodzhaeva KS, Babichev VN (1990) The effect of tefesterol on the secretion of luteinizing hormone from the hypophysis. Farmakol Toksikol 53:37–38

    PubMed  CAS  Google Scholar 

  • Ikeda K, Arao Y, Otsuka H, Nomoto S, Horiguchi H, Kato S, Kayama F (2002) Terpenoids found in the umbelliferae family act as agonists/antagonists for ER(alpha) and ERbeta: differential transcription activity between ferutinine-liganded ER(alpha) and ERbeta. Biochem Biophys Res Commun 291:354–360

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Lardy HA (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–101

    Article  CAS  Google Scholar 

  • Jonas EA, Porter CA Jr, Beutner G, Mnatsakanyan N, Alavian K (2015) Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacol Res 99:382–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  • Korotkov SM, Konovalova SA, Brailovskaya IV, Saris NE (2016) To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Toxicol In Vitro 32:320–332. https://doi.org/10.1016/j.tiv.2016.01.015

    Article  PubMed  CAS  Google Scholar 

  • Korotkov SM, Saris NE (2011) Influence of Tl(+) on mitochondrial permeability transition pore in Ca(2+)-loaded rat liver mitochondria. J Bioenerg Biomembr 43(2):149–162. https://doi.org/10.1007/s10863-011-9341-z

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ (2000) Alternative mitochondrial functions in cell physiopathology: beyond ATP production. Braz J Med Biol Res 33(2):241–250

    Article  PubMed  CAS  Google Scholar 

  • Lhuillier A, Fabre N, Cheble E, Oueida F, Maurel S, Valentin A, Fouraste I, Moulis C (2005) Daucane sesquiterpenes from Ferula hermonis. J Nat Prod 68:468–471

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Macho A, Blanco-Molina M, Spagliardi P, Appendino G, Bremner P, Heinrich M, Fiebich BL, Muñoz E (2004) Calcium ionophoretic and apoptotic effects of ferutinin in the human Jurkat T-cell line. Biochem Pharmacol 68(5):875–883

    Article  PubMed  CAS  Google Scholar 

  • Matin MM, Nakhaeizadeh H, Bahrami AR, Iranshahi M, Arghiani N, Rassouli FB (2014) Ferutinin, an apoptosis inducing terpenoid from Ferula ovina. Asian Pac J Cancer Prev 15:2123–2128

    Article  PubMed  Google Scholar 

  • Modzelewska A, Sur S, Kumar SK, Khan SR (2005) Sesquiterpenes: natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 5(5):477–499

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Bandyopadhyay S, Ghosh MK, Mukhoppadhyay S, Roy S, Mandal C (2012) Natural products: promising resources for cancer drug discovery. Anticancer Agents Med Chem 12(1):49–75

    Article  PubMed  CAS  Google Scholar 

  • Moore AL, Bonner WD (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70:1271–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, Kasimu R, Li X (2014) Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif 47(6):506–515

    Article  PubMed  CAS  Google Scholar 

  • Pandya JD, Nukala VN, Sullivan PG (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 5:10. https://doi.org/10.3389/fnene.2013.00010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petronilli V, Cola C, Bernardi P (1993a) Modulation of the mitochondrial cyclosporin A—sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J Biol Chem 268:1011–1016

    PubMed  CAS  Google Scholar 

  • Petronilli V, Cola C, Massari S, Colonna R, Bernardi P (1993b) Physiological effectors modify voltage sensing by the cyclosporine A—sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945

    PubMed  CAS  Google Scholar 

  • Poli F, Appendino G, Sacchetti G, Ballero M, Maggiano N, Ranelletti DO (2005) Antiproliferative effects of daucane esters from Ferula communis and F. arrigonii on human colon cancer cell lines. Phytother Res 19:152–157

    Article  PubMed  CAS  Google Scholar 

  • Safi R, Rodriguez F, Hilal G, Diab-Assaf M, Diab Y, El-Sabban M, Najjar F, Delfourne E (2016) Hemisynthesis, antitumoral effect, and molecular docking studies of ferutinin and its analogues. Chem Biol Drug Des 87(3):382–397

    Article  PubMed  CAS  Google Scholar 

  • Saidkhodzjaev AJ, Nikonov GK (1973) The constituents of ferutinin. Chem Nat Prod 1:28–30

    Google Scholar 

  • Suta S, Maggi F, Nicoletti M, Baldan V, Dall Acqua S (2017) New drugs from old natural compounds: scarcely investigated sesquiterpenes as new possible therapeutic agents. Curr Med Chem. https://doi.org/10.2174/0929867324666170404150351

    Article  Google Scholar 

  • Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM, Valencia T, Brun-Zinkernagel AM, Prokai L, Will Y, Dykens J, Koulen P, Simpkins W (2004) Mitochondrial localization of estrogen receptor β. Proc Natl Acad Sci USA 101(12):4130–4135

    Article  PubMed  CAS  Google Scholar 

  • Zamaraeva MV, Hagelgans AI, Abramov AY, Ternovsky VI, Merzlyak PG, Tashmukhamedov BA, Saidkhodzjaev AI (1997) Ionophoretic properties of ferutinin. Cell Calcium 22(4):235–241

    Article  PubMed  CAS  Google Scholar 

  • Zamaraeva MV, Hagelgans AI, Lubnina AI, Abramov AY, Ahmedhodjaeva HS, Saidhodjaev AI, Glazyrina NG (1999) Hormonal activity and membrane action of plants terpenoids. Cell Mol Biol Lett 4(2):189

    CAS  Google Scholar 

  • Zamaraeva M, Charishnikova O, Saidkhodjaev A, Isidorov V, Granosik M, Rozalski M, Watala C (2010) Calcium mobilization by the plant estrogen ferutinin does not induce blood platelet aggregation. Pharmcol Rep 62:1117–1126

    Article  CAS  Google Scholar 

  • Zavatti M, Bertoni L, Maraldi T, Resca E, Berreti F, Guida M, La Sala GB, De Pol A (2015) Critical-size bone defect repair using amniotic fluid stem cell/collagen constructs: effect of oral ferutinin treatment in rats. Life Sci 121:174–183

    Article  PubMed  CAS  Google Scholar 

  • Zavodnik IB, Dremza IK, Cheshchevik VT, Lapshina EA, Zamaraewa M (2013) Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sci 92(23):1110–1117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Zavodnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

The informed consent was obtained from all the individual participants involved in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyich, T., Charishnikova, O., Sekowski, S. et al. Ferutinin Induces Membrane Depolarization, Permeability Transition Pore Formation, and Respiration Uncoupling in Isolated Rat Liver Mitochondria by Stimulation of Ca2+-Permeability. J Membrane Biol 251, 563–572 (2018). https://doi.org/10.1007/s00232-018-0032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-0032-0

Keywords

Navigation