Skip to main content
Log in

Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Lipid membrane interfaces are complex environments that host essential cellular processes such as binding of proteins or drug molecules. A key open question is how water molecules at the interface of membranes with anionic lipids participate in protein binding. To address this question, we studied the dynamics of water hydrogen bonding at the interface of membranes composed of phosphatidylcholine and phosphatidylglycerol, and implemented an algorithm to identify hydrogen-bonded networks at the interface of a lipid membrane, and to characterize their dynamics and linear connections. We find that the membrane interface is characterized by a rich network of hydrogen-bonded water chains that bridge lipid headgroups, some of which form transient lipid clusters. Water-mediated bridges between with lipid phosphate groups are dynamic, with residence lifetimes on the order of picoseconds. These clusters of water/lipid headgroup hydrogen bonds could provide a platform for the binding of proteins or of drug molecules with cationic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agmon N, Gutman M (2011) Proton fronts on membranes. Nat Chem 3:840–842

    Article  PubMed  CAS  Google Scholar 

  • Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F (2007) Nanodiscs reveal the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26:1995–2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bankaitis VA, Mousley CJ, Schaaf G (2009) The Sec14 superfamiliy and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci 35:150–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berkowitz ML, Bostik DL, Pandit S (2006) Aqueous solution next to phospholipid membrane interfaces: Insights from simulations. Chem Rev 106:1527–1539

    Article  PubMed  CAS  Google Scholar 

  • Bhide SY, Berkowitz ML (2005) Structure and dynamics of water at the interface with phospholipid bilayers. J Chem Phys 123:224702

    Article  PubMed  CAS  Google Scholar 

  • Böckmann RA, Grubmüller H (2004) Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew Chem Int Ed 43:1021–1024

    Article  CAS  Google Scholar 

  • Bondar A-N (2016) Biophysical mechanism of rhomboid proteolysis: setting a foundation for therapeutics. Seminars Cell Dev Biol 60:46–51

    Article  CAS  Google Scholar 

  • Bondar A-N, White SH (2012) Hydrogen bond dynamics in membrane protein function. Biochim Biophys Acta 1818:942–950

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Connor J, Pak CC, Schroit AJ (1994) Exposure of phosphatidylserine in the outer leaflet of human red blood cells. J Biol Chem 269:2399–2404

    PubMed  CAS  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Sten C (2009). Introduction to algorithms, 3rd edn. Massachusetts Institute of Technology

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N x log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Dicko A, Bourque H, Pézolet M (1998) Study by infrared spectroscopy of the conformation of dipalmitoylphospatidylglycerol monolayers at the air-water interface and transferred on solid substrates. Chem Phys Lipids 96:125–139

    Article  CAS  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci USA 104:20479–20752

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks B (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Hübner W, Blume A (1998) Interactions at the lipid-water interface. Chem Phys Lipid 96:99–123

    Article  Google Scholar 

  • Humphrey W, Dalke W, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Votrobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez CF, Nielsen SO, Klein ML, Moore PB (2004) Hydrogen binding structure and dynamics of water at the dimyristoylphosphatidylcholine lipid bilayer surface from a molecular dynamics simulation. J Phys Chem B 108:6603–6610

    Article  CAS  Google Scholar 

  • Lorch S, Capponi S, Pieront F, Bondar A-N (2015) Dynamic carboxylate/water networks on the surface of the PsbO subunit of photosystem II. J Phys Chem B 119:12172–12181

    Article  PubMed  CAS  Google Scholar 

  • Makarov VA, Feig M, Andrews BK, Pettitt MB (1998) Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study. Biophys J 75:150–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrink SJ, Berkowitz ML, Berendsen HJC (1993) Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force. Langmuir 9:3122–3131

    Article  CAS  Google Scholar 

  • Milenkovic S, Bondar A-N (2016) Mechanism of conformational coupling in SecA: key role of hydrogen-bonding networks and water interactions. Biochim Biophys Acta 1858:374–385

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic S, Bondar A-N (2018) Motions of the SecA protein motor bound to signal peptide: Insights from molecular dynamics simulations. Biochim Biophys Acta 1860:416–427

    Article  PubMed  CAS  Google Scholar 

  • Muegge I, Knapp E-W (1995) Residence times and lateral diffusion of water at protein surfaces: application to BPTI. J Phys Chem 99:1371–1374

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Monticelli L, Tieleman DP (2004) Molecular dynamics simulations of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murzyn K, Róg T, Pasenkiewicz-Gierula M (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J 88:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1429:159–195

    Article  Google Scholar 

  • Noble JM, Thomas TH, Ford GA (1999). Effect of age on plasma membrane asymmetry and membrane fluidity in human leokocytes and platelets. J Gerontol: Med Sci 54:M60–M606

    Article  Google Scholar 

  • Pandit KR, Klauda JB (2012) Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochim Biophys Acta 1818:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Pandit SA, Bostick D, Berkowitz ML (2003) Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid compensation, ion binding, and electrostatics. Biophys J 85:3120–3131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasenkiewicz-Gierula M, Baczynski K, Markiewicz M, Murzyn K (2016) Computer modelling studies of the bilayer/water interface. Biochim Biophys Acta 1858:2305–2321

    Article  PubMed  CAS  Google Scholar 

  • Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-bridging via hydrogen-bonded water. J Phys Chem A 101:3677–3691

    Article  CAS  Google Scholar 

  • Petrache HI, Tristam-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips JC, Braun B, Wang W, Gumbart J, Takjkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prats M, Tocanne JF, Teissie J (1987) Lateral proton conduction at a lipid/water interface. Effect of lipid nature and ionic content of the aqueous phase. Eur J Biochem 162:379–385

    Article  PubMed  CAS  Google Scholar 

  • Ran S, Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasuculature and a potential target for cancer imaging and therapy. Int J Radioation Oncology Biol Phys 54:1479–1484

    Article  CAS  Google Scholar 

  • Riedl S, Kinner B, Asslaber M, Schaider H, Walzer S, Novak A, Lohner K, Zweytick D (2011) In search of a novel target: phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignacies with poor treatment efficacy. Biochim Biophys Acta 1808:2638–2645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Róg T, Mutzyn K, Milhaud J, Karttunen M, Pasenkiewicz-Gierula M (2009) Water isotope effect on the phosphatidylcholine bilayer properties: a molecular dynamics simulation study. J Phys Chem B 113:2378–2387

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints. Molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sengupta N, Jaud S, Tobias DJ (2008) Hydration dynamics in a partially denatured ensemble of the globular protein human a-lactalbumin investigated with molecular dynamics simulations. Biophys J 95:5257–5267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smondyrev AM, Berkowitz ML (1999) Structure of dipalmidoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J 77:2075–2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Springer A, Hagen V, Cherepanov DA, Antonenko YN, Pohl P (2011) Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface. Proc Natl Acad Sci 108:14461–14466

    Article  PubMed  Google Scholar 

  • Sterpone F, Stirnemann G, Hynes JT, Laage D (2010) Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups. J Phys Chem B 114:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Sushko O, Dubrovka R, Donnan RS (2013) Terahertz spectral domain computational analysis of hydration shell of proteins with increasingly complex tertiary structure. J Phys Chem B 117:16486–16492

    Article  PubMed  CAS  Google Scholar 

  • The MathWorks, I (2017). MATLAB. Natick, Massachusetts

  • Tielrooij KJ, Paparo D, Piatkowski L, Bakker HJ, Bonn M (2009) Dielectroc relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys J 97:2484–2492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuckermann M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  Google Scholar 

  • Urban S, Lee JR, Freeman M (2001) Drosphila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107:173–182

    Article  PubMed  CAS  Google Scholar 

  • Urban S, Wolfe MS (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci USA 102:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • van Klompenburg W, Nilsson I, von Heijne G, de Kruijff B (1997) Anionic phospholipids are determinants of membrane protein topology. EMBO J 16:4261–4266

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkov VV, Palmer DJ, Righini R (2007) Heterogeneity of water at the phospholipid membrane interface. J Phys Chem B 111:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf MG, Grubmüller H, Groenhof G (2014) Anomalous surface diffusion of protons on lipid membranes. Biophys J 107:76–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–213

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M (2007) Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J 92:1114–1124

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Article  PubMed  CAS  Google Scholar 

  • Zwaal RFA, Schroit AJ (1997) Pathophysiological implications of membrane phospholipd asymmetry in blood cells. J Am Soc Hemathol 89:1121–1132

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Freie Universität Berlin within the Excellence Initiative of the German Research Foundation and by an allocation of computing time from HLRN, the North-German Supercomputing Alliance (bec00063, to A-NB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Nicoleta Bondar.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karathanou, K., Bondar, AN. Dynamic Water Hydrogen-Bond Networks at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl Phosphatidylglycerol. J Membrane Biol 251, 461–473 (2018). https://doi.org/10.1007/s00232-018-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-0023-1

Keywords

Navigation