Skip to main content
Log in

Regulation of H+-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Plant vacuolar H+-transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

V-PPase:

Vacuolar H+-pyrophosphate

V-ATPase:

Vacuolar H+-ATPase

TMs:

Transmembrane helices

DDM:

n-Dodecyl β-d-maltoside

Ni2+–NTA:

Nickel–nitrilotriacetic acid

PMSF:

Phenylmethylsulfonyl fluoride

MYTH:

Split-ubiquitin membrane yeast two-hybrid

3-AT:

3-Aminotriazole

References

  • Aitken A (2002) Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol Biol 50:993–1010

    Article  CAS  PubMed  Google Scholar 

  • Al-Bataineh M, Li H, Marciszyn A, Bhalla V, Hallows K, Pastor-Soler N (2015) AMPK regulates the vacuolar H+-ATPase via 14­3-3 proteins. J FASEB 29(1 Supplement):969.23

    Google Scholar 

  • Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C (2004) Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction. Plant Cell Physiol 45:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Bunney TD, van Walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondria and chloroplast ATP synthase. Proc Natl Acad Sci USA 98:4249–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camoni L, Iori V, Marra M, Aducci P (2000) Phosphorylation-dependent interaction between plant plasma membrane H+-ATPase and 14-3-3 proteins. J Biol Chem 275:9919–9923

    Article  CAS  PubMed  Google Scholar 

  • Chevalier D, Morris ER, Walker JC (2009) 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu Rev Plant Biol 60:67–91

    Article  CAS  PubMed  Google Scholar 

  • Coblitz B, Wu M, Shikano S, Li M (2006) C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. FEBS Lett 580:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Drozdowicz YM, Rea PA (2001) Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211

    Article  CAS  PubMed  Google Scholar 

  • Efendiev R, Chen Z, Krmar RT, Uhles S, Katz AI, Pedemonte CH, Bertorello AM (2005) The 14-3-3 protein translates the Na+, K+-ATPase α1-subunit phosphorylation signal into binding and activation of phosphoinositide 3-kinase during endocytosis. J Biol Chem 280:16272–16277

    Article  CAS  PubMed  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Muto Y, Maeshima M, Tsukaya H (2011) Keep an eye on PP i : the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. Plant Cell 23:2895–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  • Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG (2003) The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J Biol Chem 278:42266–42272

    Article  CAS  PubMed  Google Scholar 

  • Fullone MR, Visconti S, Marra M, Fogliano V, Aducci P (1998) Fusicoccin effect on the in vitro interaction between plant 14-3-3 proteins and plasma membrane H+-ATPase. J Biol Chem 273:7698–7702

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Sanchez CA, Paez-Valencia J, Ayre BG, Elser JJ (2012) Genetic manipulation of a”vacuolar”H+-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol 159:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez N, Bodt SD, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Daele TV, Milde LD, Weigel D, Kumiya Y, Stitt M (2010) Increased leaf size: different means to an end. Plant Physiol 153:1261–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon-Week R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol 111:195–202

    Article  Google Scholar 

  • Hernandez A, Herrera-Palau R, Madronal JM, Albi T, Lopez-Lluch G, Perez-Castineira JR, Navas P, Valverde F, Serrano A (2016) Vacuolar H+-pyrophosphatase AVP1 is involved in amine fungicide tolerance in Arabidopsis thaliana and provides tridemorph resistance in yeast. Front Plant Sci 7:85

    PubMed  PubMed Central  Google Scholar 

  • Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1608:190–199

    Article  CAS  PubMed  Google Scholar 

  • Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL (2013) Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. J Biol Chem 288:19312–19320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber SC, MacKintosh C, Kaiser WM (2002) Metabolic enzymes as targets for 14-3-3 proteins. Plant Mol Biol 50:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Jaspert N, Throm C, Oecking C (2011) Arabidopsis14-3-3 proteins: fascinating and less fascinating aspects. Front Plant Sci 2:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch RD, Joly E (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26:1848–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klychnikov OI, Li KH, Lill H, de Boer AH (2007) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–404

    Article  CAS  PubMed  Google Scholar 

  • Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL (2009) The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 276:4381–4394

    Article  CAS  PubMed  Google Scholar 

  • Lo YY, Hsu SH, Ko YC, Hung CC, Chang MY, Hsu HH, Pan MJ, Chen YW, Lee CH, Tseng FG, Sun YJ, Yang CW, Pan RL (2013) Essential calcium-binding cluster of Leptospira LipL32 protein for inflammatory responses through the toll-like receptor 2 pathway. J Biol Chem 288:12335–12344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889–897

    Article  CAS  PubMed  Google Scholar 

  • Obsilova V, Kopecka M, Hosek D, Kacirova M, Kylarova S, Rezabkova L, Obsil T (2014) Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiol Res 63:(Suppl. 1):S155–S164

    Google Scholar 

  • Pan YJ, Lee CH, Hsu SH, Huang YT, Lee CH, Liu TH, Chen YW, Lin SM, Pan RL (2011) The transmembrane domain 6 of vacuolar H+-pyrophosphatase mediates protein targeting and proton transport. Biochim Biophys Acta 1807:59–67

    Article  CAS  PubMed  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Pathirana RD, O’Brien-Simpson NM, Veith PD, Riley PF, Reynolds EC (2006) Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. Microbiology 152:2381–2394

    Article  CAS  PubMed  Google Scholar 

  • Sehnke PC, Delille JM, Ferl RJ (2002) Consummating signal transduction: the role of 14-3-3 protein in the completion of signal-induced transitions in protein activity. Plant Cell 14:S339–S354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano A, Perez-Castineira JR, Baltscheffsky H, Baltscheffsky M (2004) Proton pumping inorganic pyrophosphatases in some archaea and other extremophilic prokaryotes. J Bioenerg Biomembr 36:127–133

    Article  CAS  PubMed  Google Scholar 

  • Svennelid F, Olsson A, Piotrowski M, Rosenquist M, Ottman C, Larsson C, Oecking C, Sommarin M (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 11:2379–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu H, Zhang G, Zhu H, Zhang L, Zhang Z, Zhang C, Ma Z (2009) Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat. J Genet Genom 36:711–720

    Article  CAS  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gambin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91:961–971

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL (2004) Thermoinactivation analysis of vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1656:88–95

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstrom M, Doyle DA, Elkins JM (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci USA 103:17237–17242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 65:3045–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li J, Wang X, Chen J (2011) OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Biochem 49:33–38

    Article  PubMed  Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N’-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Du GG, Anderson CT, Keller JP, Orem A, Dallos P, Cheatham M (2006) Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem 281:19916–19924

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Ministry of Science and Technology, Republic of China to R.-L. Pan (NSC 103-2311-B-007-001-MY2, NSC 104-2321-B-007-002, NSC 105-2311-B-007-011-MY2), and by the Grants of the thematic research program from Agricultural Biotechnology Research Center, Academia Sinica, Republic of China (AS 103-TP-B11).

Author information

Authors and Affiliations

Authors

Contributions

YDH and YFH performed the experiments. All authors have participated in the discussions and technique assistance during the course of this studies. YDH wrote the paper initially. CHL and RLP supervised the experimental design of this project and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ching-Hung Lee or Rong-Long Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest with the contents of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YD., Huang, YF., Pan, YJ. et al. Regulation of H+-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana. J Membrane Biol 251, 263–276 (2018). https://doi.org/10.1007/s00232-018-0020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-0020-4

Keywords

Navigation