The Journal of Membrane Biology

, Volume 251, Issue 3, pp 299–314 | Cite as

Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase

  • Tahereh Ghane
  • Rene F. Gorriz
  • Sandro Wrzalek
  • Senta Volkenandt
  • Ferand Dalatieh
  • Marco Reidelbach
  • Petra Imhof
Part of the following topical collections:
  1. Lipid Membranes and Reactions at Lipid Interfaces: Theory, experiments, and applications


Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO’s catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).


Membrane protein Cytochrome c oxidase Proton transfer 



We are grateful for computational resources provided by the North-German Supercomputing Alliance (HLRN). IT support by Jens Dreger of the Physics department at Freie Universität Berlin is gratefully acknowledged.


This study was funded by the Deutsche Forschungsgemeinschaft (DFG) provided through project C5 “Redox-state dependent communication and protonation dynamics in cytochrome c oxidase” in the Sonderforschungsbereich 1078 (SFB 1078) on ’Protonation Dynamics in Protein Function’.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

232_2018_19_MOESM1_ESM.pdf (5.3 mb)
Supplementary material 1 (PDF 5396 KB)


  1. Ädelroth P, Gennis RB, Brzezinski P (1998) Role of the pathway through k (i-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Biochemistry 37(8):2470–2476CrossRefPubMedGoogle Scholar
  2. Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309CrossRefPubMedGoogle Scholar
  3. Bagga Jay, Heinz Adrain (2002) Jgraph—a java based system for drawing graphs and running graph algorithms. In: Mutzel Petra, Jünger Michael, Leipert Sebastian (eds) Graph drawing, vol 2265. Lecture notes in computer science. Springer, Berlin, pp 459–460CrossRefGoogle Scholar
  4. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179CrossRefPubMedGoogle Scholar
  5. Belevich I, Bloch DA, Belevich N, Wikström M, Verkhovsky MI (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci USA 104:2685–2690CrossRefPubMedGoogle Scholar
  6. Bondar AN, Smith JC (2009) Water molecules in short- and long-distance proton transfer steps of bacteriorhodopsin proton pumping. Isr J Chem 49:155–161CrossRefGoogle Scholar
  7. Brändén Gisela, Pawate Ashtamurthy S, Gennis Robert B, Brzezinski Peter (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103(2):317–322CrossRefPubMedGoogle Scholar
  8. Brzezinski P, Adelroth P (1998) Proton-controlled electron transfer in cytochrome c oxidase: functional role of the pathways through Glu 286 and Lys 362. Acta Physiol Scand Suppl 643:7–16PubMedGoogle Scholar
  9. Son CY, Yethiraj A, Cui Q (2017) Cavity hydration dynamics in cytochrome c oxidase and functional implications. Proc Natl Acad Sci USA 114(42):E8830–E8836Google Scholar
  10. Chaumont A, Baer M, Mathias G, Marx D (2008) Potential proton-release channels in bacteriorhodopsin. ChemPhysChem 9:2751–2758CrossRefPubMedGoogle Scholar
  11. Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York, p 19Google Scholar
  12. Cukier RI (2005) A molecular dynamics study of water chain formation in the proton-conducting k channel of cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1706(1):134–146CrossRefGoogle Scholar
  13. Darden T, York D, Pedersen LG (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  14. Dellago C, Naor MM, Hummer G (2003) Proton transport through water-filled carbon nanotubes. Phys Rev Lett 90:105902CrossRefPubMedGoogle Scholar
  15. Goyal P, Yang S, Cui Q (2015) Microscopic basis for kinetic gating in cytochrome c oxidase: insights from qm/mm analysis. Chem Sci 6(1):826–841CrossRefPubMedGoogle Scholar
  16. Hara-Chikuma M, Verkman AS (2005) Aquaporin-3 functions as a glycerol transporter in mammalian skin. Biol Cell 97:479–486CrossRefPubMedGoogle Scholar
  17. Helabad MB, Ghane T, Reidelbach M, Woelke AL, Knapp EW, Imhof P (2017) Protonation-state-dependent communication in cytochrome c oxidase. Biophys J 113(4):817–828CrossRefGoogle Scholar
  18. Henry RM, Yu C-H, Rodinger T, Pomès R (2009) Functional hydration and conformational gating of proton uptake in cytochrome c oxidase. J Mol Biol 387(5):1165–1185CrossRefPubMedGoogle Scholar
  19. Henry RM, Caplan D, Fadda E, Pomès RA (2011) Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase. J Phys 23(23):234102Google Scholar
  20. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  21. Ilan B, Tajkhorshid E, Schulten K, Voth GA (2004) The mechanism of proton exclusion in aquaporin channels. Proteins Struct Funct Bioinform 55:223–228CrossRefGoogle Scholar
  22. Jiancong X, Sharpe MA, Qin L, Ferguson-Miller S, Voth Gregory A (2007) Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome c oxidase: identification of a protonated water cluster. J Am Chem Soc 129(10):2910–2913CrossRefGoogle Scholar
  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  24. Kaila VR, Verkhovsky MI, Hummer G, Wikström M (2008) Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci USA 105(17):6255–6259CrossRefPubMedGoogle Scholar
  25. Kandt C, Gerwert K, Schlitter J (2005) Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins Struct Funct Bioinform 58:528–537CrossRefGoogle Scholar
  26. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the charmm all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843CrossRefPubMedPubMedCentralGoogle Scholar
  27. Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis Robert B (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94(17):9085–9090CrossRefPubMedGoogle Scholar
  28. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69:066138CrossRefGoogle Scholar
  29. Lee HJ, Svahn E, Swanson JM, Lepp H, Voth GA, Brzezinski P, Gennis RB (2010) Intricate role of water in proton transport through cytochrome c oxidase. J Am Chem Soc 132:16225–16239CrossRefPubMedPubMedCentralGoogle Scholar
  30. Levitt M, Sharon R (1988) Accurate simulation of protein dynamics in solution. Proc Natl Acad Sci USA 85:7557–7561CrossRefPubMedGoogle Scholar
  31. Liangn R, Swanson JM, Wikström M, Voth G (2017) Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase. Proc Natl Acad Sci USA 114(23):5924–5929CrossRefGoogle Scholar
  32. Luzar A (2000) Resolving the hydrogen bond dynamics conundrum. J Chem Phys 113:10663–10675CrossRefGoogle Scholar
  33. Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57CrossRefGoogle Scholar
  34. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616Google Scholar
  35. Mahoney MW, Jorgensen WL (2001) Diffusion constant of the tip5p model of liquid water. J Chem Phys 114:363CrossRefGoogle Scholar
  36. Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem 77:685–688CrossRefGoogle Scholar
  37. Namslauer A, Pawate AS, Gennis RB, Brzezinski P (2003) Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase. Proc Natl Acad Sci USA 100(26):15543–15547CrossRefPubMedGoogle Scholar
  38. Oliveira AS, Campos SR, Baptista AM, Soares CM (2016) Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochim Biophys Acta Bioenerg 1857(6):759–771CrossRefGoogle Scholar
  39. Pawate AS, Morgan J, Namslauer A, Mills D, Brzezinski P, Ferguson-Miller S, Gennis RB (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41:13417–13423CrossRefPubMedGoogle Scholar
  40. Peng Y, Swanson JM, Kang SG, Zhou R, Voth GA (2014) Hydrated excess protons can create their own water wires. J Phys Chem B 119:9212–9218CrossRefPubMedPubMedCentralGoogle Scholar
  41. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid Emad, Villa Elizabeth, Chipot Christophe, Skeel Robert D, Kale Laxmikant, Schulten Klaus (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pomès R, Hummer G, Wikström M (1998) Structure and dynamics of a proton shuttle in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1365(1):255–260CrossRefGoogle Scholar
  43. Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA 103(44):16117–16122CrossRefPubMedGoogle Scholar
  44. Riistama S, Hummer G, Puustinen A, Dyer RB, Woodruff WH, Wikström M (1997) Bound water in the proton translocation mechanism of the haem-copper oxidases. FEBS Lett 414(2):275–280CrossRefPubMedGoogle Scholar
  45. Roy A, Taraphder S (2008) A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. J Phys Chem B 112(43):13597–13607CrossRefPubMedGoogle Scholar
  46. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints. J Comp Phys 23:327–341CrossRefGoogle Scholar
  47. Sagnella DE, Voth GA (1996) Structure and dynamics of hydronium in the ion channel gramicidin A. Biophys J 70:2043–2051CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sharma V, Wikström M, Kaila VR (2012) Dynamic water networks in cytochrome cbb 3 oxidase. Biochim Biophys Acta Bioenerg 1817(5):726–734CrossRefGoogle Scholar
  49. Stillinger FH (1980) Water revisited. Science 209:451–457CrossRefPubMedGoogle Scholar
  50. Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome p450cam. J Am Chem Soc 125(13):3931–3940CrossRefPubMedGoogle Scholar
  51. Taraphder S, Maupin CM, Swanson JM, Voth GA (2016) Coupling protein dynamics with proton transport in human carbonic anhydrase II. J Phys Chem B 120(33):8389–8404CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tuukkanen A, Kaila VR, Laakkonen L, Hummer G, Wikström M (2007) Dynamics of the glutamic acid 242 side chain in cytochrome c oxidase. Biochim Biophys Acta Bioenerg 1767(9):1102–1106CrossRefGoogle Scholar
  53. Wikström M, Verkhovsky MI, Hummer G (2003) Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim Biophys Acta (BBA) Bioenerg 1604(2):61–65CrossRefGoogle Scholar
  54. Wikström M, Sharma V, Kaila VR, Hosler JP, Hummer G (2015) New perspectives on proton pumping in cellular respiration. Chem Rev 115(5):2196–2221CrossRefPubMedGoogle Scholar
  55. Woelke AL, Galstyan G, Galstyan A, Meyer T, Heberle J, Knapp EW (2013) Exploring the possible role of glu286 in cco by electrostatic energy computations combined with molecular dynamics. J Phys Chem B 117(41):12432–12441CrossRefPubMedGoogle Scholar
  56. Woelke AL, Galstyan G, Knapp EW (2014) Lysine 362 in cytochrome c oxidase regulates opening of the k-channel via changes in pKa and conformation. Biochim Biophys Acta Bioenerg 1837(12):1998–2003CrossRefGoogle Scholar
  57. Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K (2010) Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: A proton diode. Angew Chem Int Ed 49:6889–6893CrossRefGoogle Scholar
  58. Yamashita A, Voth GA (2011) Insight into the mechanism of proton transport in cytochrome c oxidase. J Am Chem Soc 134:1147–1152CrossRefGoogle Scholar
  59. Yang L, Skjevik ÅA, Du WG, Noodleman L, Walker RC, Götz AW (2016) Water exit pathways and proton pumping mechanism in b-type cytochrome c oxidase from molecular dynamics simulations. Biochim Biophys Acta Bioenerg 1857:1594–1606CrossRefGoogle Scholar
  60. Zhu J, Han H, Pawate A, Gennis RB (2010) Decoupling mutations in the d-channel of the aa3-type cytochrome c oxidase from rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping. Biochemistry 49(21):4476–4482CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsFreie Universität BerlinBerlinGermany
  2. 2.R Institute GmbHPotsdamGermany

Personalised recommendations