Skip to main content
Log in

Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca2+ mobilization from Ca2+-storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3–4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer membranes. I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  CAS  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi R, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  PubMed  Google Scholar 

  • Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  CAS  PubMed  Google Scholar 

  • Cheek TR, Bourgogne RD (1985) Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim Biophys Acta 846:167–173

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Schoenbach KH, Kolb JF, Swanson RJ, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL (2004) Generation of functionally competent single bovine adrenal chromaffin cells from cell aggregates using the neutral protease dispase. J Neurosci Methods 137:275–281

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL, Chatterjee P, Maalouf G, Cerjanic A, Yoon J, Chatterjee I, Vernier PT (2009) Nanosecond electric pulse-induced increase in intracellular calcium in adrenal chromaffin cells triggers calcium-dependent catecholamine release. IEEE Trans Dielectr Electr Insul 16:1294–1301

    Article  CAS  Google Scholar 

  • Craviso GL, Chloe S, Chatterjee P, Chatterjee I, Vernier PT (2010) Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol 30:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL, Chloe S, Chatterjee I, Vernier PT (2012) Modulation of intracellular Ca2+ levels in chromaffin cells by nanoelectropulses. Bioelectrochemistry 87:244–252

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL, Fisher C, Chatterjee I, Vernier PT (2015) Adrenal chromaffin cells do not swell when exposed to nanosecond electric pulses. Bioelectrochemistry 103:98–102

    Article  CAS  PubMed  Google Scholar 

  • DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Sancho J, Verkhratsky A (2008) Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells. Acta Physiol 192:263–271

    Article  Google Scholar 

  • Garner AL, Chen G, Chen N, Sridhara V, Kolb JF, Swanson RJ, Beebe SJ, Joshi RP, Schoenbach KH (2007) Ultrashort electric pulse induced changes in cellular dielectric properties. Biochem Biophys Res Commun 362:139–144

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    Article  CAS  PubMed  Google Scholar 

  • Hassan N, Chatterjee I, Publicover N, Craviso GL (2002) Mapping membrane-potential perturbations of chromaffin cells exposed to electric fields. IEEE Trans Plasma Sci 30:1516–1524

    Article  Google Scholar 

  • Huh YH, Bahk SJ, Ghee JY, Yoo SH (2005a) Subcellular distribution of chromogranins A and B in bovine adrenal chromaffin cells. FEBS Lett 579:5145–5151

    Article  CAS  PubMed  Google Scholar 

  • Huh YH, Yoo JA, Bahk SJ, Yoo SH (2005b) Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells. FEBS Lett 579:2597–2603

    Article  CAS  PubMed  Google Scholar 

  • Joshi RP, Nguyen A, Sridhara V, Hu Q, Nuccitelli R, Beebe SJ, Kolb J, Schoenbach KH (2007) Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse. Phys Rev E 75:041920

    Article  CAS  Google Scholar 

  • Kotnik T, Miklavčič D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  CAS  PubMed  Google Scholar 

  • Machado JD, Camacho M, Alvarez J, Borges R (2009) On the role of intravesicular calcium in the motion and exocytosis of secretory organelles. Commun Integr Biol 2:71–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikoshiba K (1997) The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol 7:339–345

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Sakamoto T, Wada A (1988) A theoretical study of the dielectric constant of protein. Protein Eng 2:177–183

    Article  CAS  PubMed  Google Scholar 

  • Napotnik TB, Reberšek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavčič D (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Napotnik TB, Wu YH, Gundersen MA, Miklavčič D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264

    Article  CAS  Google Scholar 

  • Napotnik TB, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • O’Sullivan AJ, Cheek TR, Moreton RB, Berridge MJ, Burgoyne RD (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J 8:401–411

    PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  • Plattner H, Artalejo AR, Neher E (1997) Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J Cell Biol 139:1709–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polevaya Y, Ermolina I, Schlesinger M, Ginzburg BZ, Feldman Y (1999) Time domain dielectric spectroscopy study of human cells: II. Normal and malignant white blood cells. Biochim Biophys Acta 1419:257–271

    Article  CAS  PubMed  Google Scholar 

  • Powell KT, Weaver JC (1986) Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioenerg 15:211–227

    Article  Google Scholar 

  • Qiu H, Xiao S, Joshi RP (2014) Simulations of voltage transients across intracellular mitochondrial membranes due to nanosecond electrical pulses. IEEE Trans Plasma Sci 42:3113–3120

    Article  Google Scholar 

  • Rems L, Ušaj M, Kandušer M, Reberšek M, Miklavčič D, Pucihar G (2013) Cell electrofusion using nanosecond electric pulses. Sci Rep 3:3382

    Article  PubMed  PubMed Central  Google Scholar 

  • Retelj L, Pucihar G, Miklavčič D (2013) Electroporation of intracellular liposomes using nanosecond electric pulses—a theoretical study. IEEE Trans Biomed 60:2624–2635

    Article  Google Scholar 

  • Sabuncu AC, Zhuang J, Kolb JF, Beskok A (2012) Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology. Biomicrofluidics 6:34103

    Article  PubMed  Google Scholar 

  • Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF (2009) Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. Biochim Biophys Acta Biomembr 1788:1168–1175

    Article  CAS  Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  CAS  PubMed  Google Scholar 

  • Semenov I, Xiao S, Pakhomov AG (2013a) Primary pathways of intracellular Ca2+ mobilization by nanosecond pulsed electric field. Biochim Biophys Acta 1828:981–989

    Article  CAS  PubMed  Google Scholar 

  • Semenov I, Xiao S, Pakhomova ON, Pakhomov AG (2013b) Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 54:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirvan MH, Pollard HB, Heldman E (1991) Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells. Proc Natl Acad Sci USA 88:4860–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silve A, Leray I, Mir LM (2012) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry 87:260–264

    Article  CAS  PubMed  Google Scholar 

  • Smith KC (2006) Modeling cell and tissue electroporation. Master’s thesis, Massachusetts Institute of Technology

  • Smith KC (2011) A unified model of electroporation and molecular transport. Dissertation, Massachusetts Institute of Technology

  • Smith KC, Weaver JC (2008) Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 95:1547–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steelman ZA, Tolstykh GP, Estlack LE, Roth CC, Ibey BL (2015) The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures. In: Proceedings of SPIE 9326, energy-based treatment of tissue and assessment VIII, 932611. doi:10.1117/12.2079928

  • Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  • Tolstykh GP, Beier HT, Roth CC, Thompson GL, Payne JA, Kuipers MA, Ibey BL (2013) Activation of intracellular phosphoinositide signaling after a single 600 nanosecond electric pulse. Bioelectrochemistry 94:23–29

    Article  CAS  PubMed  Google Scholar 

  • Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanosecond pulsed electric fields trigger intracellular signals in human lymphocytes. In: Technical proceedings of the 2004 NSTI nanotechnology conference and trade show, vol 1 (NSTI Nanotech: technical proceedings), 1st edn. CRC Press, Florida, pp 7–10

  • Vernier PT, Sun Y, Chen MT, Gundersen MA, Craviso GL (2008) Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73:1–4

    Article  CAS  PubMed  Google Scholar 

  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279:22964–22972

    Article  CAS  PubMed  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neurosci 5:1803–1823

    Article  CAS  Google Scholar 

  • Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745

    CAS  PubMed  Google Scholar 

  • Yoon J, Leblanc N, Zaklit J, Vernier PT, Chatterjee I, Craviso GL (2016) Enhanced monitoring of nanosecond electric pulse-evoked membrane conductance changes in whole-cell patch clamp experiments. J Membr Biol 249:1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants FA9550-14-1-0018 and FA9550-14-1-0123 from the Air Force Office of Scientific Research. The authors would like to thank Dr. James Weaver for helpful discussions regarding the cell modeling; Dr. Jihwan Yoon for technical assistance with the exposure setup; Dr. Michael Stacey (Old Dominion University) and Dr. Ahmet Can Sabuncu (Southern Methodist University) for determining the dielectric properties of chromaffin cells; Mojtaba Ahmadiantehrani for gold coating the tungsten electrodes; Robert Terhune for performing SEMCAD X simulations; Eric Evans and Steve Shin for technical help; and Mike Holcomb at Wolf Pack Meats in Reno, NV for providing fresh bovine adrenal glands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josette Zaklit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaklit, J., Craviso, G.L., Leblanc, N. et al. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study. J Membrane Biol 250, 535–552 (2017). https://doi.org/10.1007/s00232-017-9983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9983-9

Keywords

Navigation