Skip to main content
Log in

Kinetic Basis of Cis- and Trans-Allostery in GLUT1-Mediated Sugar Transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A growing body of evidence demonstrates that GLUT1-mediated erythrocyte sugar transport is more complex than widely assumed and that contemporary interpretations of emergent GLUT1 structural data are incompatible with the available transport and biochemical data. This study examines the kinetic basis of one such incompatibility—transport allostery—and in doing so suggests how the results of studies examining GLUT1 structure and function may be reconciled. Three types of allostery are observed in GLUT1-mediated, human erythrocyte sugar transport: (1) exofacial cis-allostery in which low concentrations of extracellular inhibitors stimulate sugar uptake while high concentrations inhibit transport; (2) endofacial cis-allostery in which low concentrations of intracellular inhibitors enhance cytochalasin B binding to GLUT1 while high concentrations inhibit binding, and (3) trans-allostery in which low concentrations of ligands acting at one cell surface stimulate ligand binding at or sugar transport from the other surface while high concentrations inhibit these processes. We consider several kinetic models to account for these phenomena. Our results show that an inhibitor can only stimulate then inhibit sugar uptake if (1) the transporter binds two or more molecules of inhibitor; (2) high-affinity binding to the first site stimulates transport, and (3) low-affinity binding to the second site inhibits transport. Reviewing the available structural, transport, and ligand binding data, we propose that exofacial cis-allostery results from cross-talk between multiple, co-existent ligand interaction sites present in the exofacial cavity of each GLUT1 protein, whereas trans-allostery and endofacial cis-allostery require ligand-induced subunit–subunit interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kasahara M, Hinkle PC (1977) Reconstitution and purification of the d-glucose transporter from human erythrocytes. J Biol Chem 252:7384–7390

    CAS  PubMed  Google Scholar 

  2. Baldwin JM, Gorga JC, Lienhard GE (1981) The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution. J Biol Chem 256:3685–3689

    CAS  PubMed  Google Scholar 

  3. Lloyd KP, Ojelabi OA, De Zutter JK, Carruthers A (2017) Reconciling contradictory findings: glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J Biol Chem (in press)

  4. Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A (2016) WZB117 inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. J Biol Chem 291:26762–26772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamill S, Cloherty EK, Carruthers A (1999) The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry 38:16974–16983

    Article  CAS  PubMed  Google Scholar 

  6. Robichaud T, Appleyard AN, Herbert RB, Henderson PJ, Carruthers A (2011) Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site. Biochemistry 50:3137–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cloherty EK, Levine KB, Carruthers A (2001) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40:15549–15561

    Article  CAS  PubMed  Google Scholar 

  8. Sultzman LA, Carruthers A (1999) Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites. Biochemistry 38:6640–6650

    Article  CAS  PubMed  Google Scholar 

  9. Lieb WR, Stein WD (1974) Testing and characterizing the simple carrier. Biochim Biophys Acta 373:178–196

    Article  CAS  PubMed  Google Scholar 

  10. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  CAS  PubMed  Google Scholar 

  11. Widdas WF (1952) Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol 118:23–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker GF, Widdas WF (1973) The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. J Physiol 231:143–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker GF, Naftalin RJ (1979) Evidence of multiple operational affinities for d-glucose inside the human erythrocyte membrane. Biochim Biophys Acta 550:474–484

    Article  CAS  PubMed  Google Scholar 

  14. Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y, Abe H, Nakada-Nakura Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H, Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, Drew D (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Article  CAS  PubMed  Google Scholar 

  16. Quistgaard EM, Löw C, Moberg P, Trésaugues L, Nordlund P (2013) Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol 20:766–768

    Article  CAS  PubMed  Google Scholar 

  17. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490:361–366

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham P, Naftalin RJ (2014) Reptation-induced coalescence of tunnels and cavities in Escherichia coli XylE transporter conformers accounts for facilitated diffusion. J Membr Biol 247:1161–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cunningham P, Naftalin RJ (2013) Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models. J Membr Biol 246:495–511

    Article  CAS  PubMed  Google Scholar 

  20. Topham CM, Brocklehurst K (1992) In defence of the general validity of the Cha method of deriving rate equations. The importance of explicit recognition of the thermodynamic box in enzyme kinetics. Biochem J 282:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cha S (1968) A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem 243:820–825

    CAS  PubMed  Google Scholar 

  22. Carruthers A, Helgerson A (1991) Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Biochemistry 30:3907–3915

    Article  CAS  PubMed  Google Scholar 

  23. Helgerson AL, Carruthers A (1987) Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier. J Biol Chem 262:5464–5475

    CAS  PubMed  Google Scholar 

  24. Gorga FR, Lienhard GE (1981) Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Biochemistry 20:5108–5113

    Article  CAS  PubMed  Google Scholar 

  25. Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, New York

    Google Scholar 

  26. Carruthers A (1990) Facilitated diffusion of glucose. Physiol Rev 70:1135–1176

    Article  CAS  PubMed  Google Scholar 

  27. Baldwin SA, Baldwin JM, Lienhard GE (1982) Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation. Biochemistry 21:3836–3842

    Article  CAS  PubMed  Google Scholar 

  28. Naftalin RJ, Holman GD (1977) Transport of sugars in human red cells. In: Lew VL, Ellory JC (eds) Membrane transport in red cells. Academic Press, New York, pp 257–300

    Google Scholar 

  29. Cura AJ, Carruthers A (2012) Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2:863–91439

    PubMed  PubMed Central  Google Scholar 

  30. Carruthers A, De Zutter J, Ganguly A, Devaskar SU (2009) “Will the original glucose transporter isoform please stand up!”. Am J Physiol Endocrinol Metab 297:E836–E8489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A (1995) Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry 34:9734–9747

    Article  CAS  PubMed  Google Scholar 

  32. Hebert DN, Carruthers A (1992) Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1. J Biol Chem 267:23829–23838

    CAS  PubMed  Google Scholar 

  33. Vollers S, Carruthers A (2012) Sequence determinants of GLUT1-mediated accelerated-exchange transport—analysis by homology-scanning mutagenesis. J Biol Chem 287:42533–42544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krupka RM, Devés R (1981) An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes. J Biol Chem 256:5410–5416

    CAS  PubMed  Google Scholar 

  35. Blodgett DM, Carruthers A (2005) Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport. Biochemistry 44:2650–2660

    Article  CAS  PubMed  Google Scholar 

  36. Helgerson AL, Carruthers A (1989) Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry 28:4580–4594

    Article  CAS  PubMed  Google Scholar 

  37. Blodgett DM, De Zutter JK, Levine KB, Karim P, Carruthers A (2007) Structural Basis of GLUT1 Inhibition by Cytoplasmic ATP. J Gen Physiol 130:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heard KS, Fidyk N, Carruthers A (2000) ATP-dependent substrate occlusion by the human erythrocyte sugar transporter. Biochemistry 39:3005–3014

    Article  CAS  PubMed  Google Scholar 

  39. Carruthers A, Helgerson AL (1989) The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28:8337–8346

    Article  CAS  PubMed  Google Scholar 

  40. Afzal I, Browning JA, Drew C, Ellory JC, Naftalin RJ, Wilkins RJ (2004) Effects of anti-GLUT antibodies on glucose transport into human erythrocyte ghosts. Bioelectrochemistry 62:195

    Article  CAS  PubMed  Google Scholar 

  41. Afzal I, Cunningham P, Naftalin RJ (2002) Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. Biochem J 365:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sage JM, Cura AJ, Lloyd KP, Carruthers A (2015) Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Am J Physiol Cell Physiol 308:C827–C834

    Article  PubMed  PubMed Central  Google Scholar 

  43. De Zutter JK, Levine KB, Deng D, Carruthers A (2013) Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J Biol Chem 288:20734–20744

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Müller T, Siebeneicher H, Stroud RM (2016) Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci USA 113:4711–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colquhoun D, Dowsland KA, Beato M, Plested AJ (2004) How to impose microscopic reversibility in complex reaction mechanisms. Biophys J 86:3510–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants DK36081 and DK44888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Carruthers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, K.P., Ojelabi, O.A., Simon, A.H. et al. Kinetic Basis of Cis- and Trans-Allostery in GLUT1-Mediated Sugar Transport. J Membrane Biol 251, 131–152 (2018). https://doi.org/10.1007/s00232-017-0006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-0006-7

Keywords

Navigation