Skip to main content
Log in

Crosstalk of Nanosystems Induced Extracellular Vesicles as Promising Tools in Biomedical Applications

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Hybrid vesicles are considered as a bridge between natural nanosystems (NNSs) and artificial nanosystems (ANSs). NNSs are extracellular vesicles (EVs), membranous, bio-formed endogenously, which act as endogenous cargoes, and reflecting cellular dynamics. EVs have cellular tropism, permeate tight junctions, and are non-immunogenic. EVs are used as tools in the development of diagnostic and therapeutic agents. ANSs can induce biogenesis of hybrid vesicles as promising smart diagnostic agents, and innovative drug cargoes. EVs can encapsulate small molecules, macromolecules, and ANSs. The manipulation of EVs during biogenesis was suggested for engineering hybrid EVs. This review article highlights the role of ANSs in the biogenesis of NNSs, and introduces hybrid nanosystems research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balmert SC, Little SR (2012) Biomimetic delivery with micro- and nanoparticles. Adv Mater 24(28):3757–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnier L, Fontana P, Kwak B, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101(3):439–451

    CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172

    Article  PubMed  Google Scholar 

  • Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    Article  CAS  PubMed  Google Scholar 

  • Chahar HS, Bao X, Casola A (2015) Exosomes and their role in the life cycle and pathogenesis of RNA Viruses. Viruses 7(6):3204–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrawati R, Caruso F (2012) Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28(39):13798–13807

    Article  CAS  PubMed  Google Scholar 

  • Elbialy NS, Mady MM (2015) Ehrlich tumor inhibition using doxorubicin containing liposomes. Saudi Pharm J 23:182–187

    Article  PubMed  Google Scholar 

  • Fang RH, Luk BT, Hu CM, Zhang L (2015) Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv Drug Deliv Rev 90:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang RH, Jiang Y, Fang JC, Zhang L (2017) Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128:69–83

    Article  CAS  PubMed  Google Scholar 

  • Fleury A, Martinez MC, Le Lay S (2014) Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 5:370

    Article  PubMed  PubMed Central  Google Scholar 

  • França CN, Izar MC, Amaral JB, Tegani DM, Fonseca FA (2015) Microparticles as potential biomarkers of cardiovascular disease. Arq Bras Cardiol 104:169

    PubMed  PubMed Central  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Fröhlich E (2013) Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr Drug Metab 14(9):976–988

    Article  PubMed  PubMed Central  Google Scholar 

  • Fröhlich E (2016) Cellular elimination of nanoparticles. Environ Toxicol Pharmacol 46:90–94

    Article  PubMed  Google Scholar 

  • Gupta N, Patel B, Ahsan F (2014) Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res 31(6):1553–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harisa GI, Alanazi FK (2014) Low density lipoprotein bionanoparticles: from cholesterol transport to delivery of anti-cancer drugs. Saudi Pharm J 22(6):504–515

    Article  PubMed  Google Scholar 

  • Harisa GI, Badran MM, Alanazi FK (2017a) Erythrocyte nanovesicles: biogenesis, biological roles and therapeutic approach: erythrocyte nanovesicles. Saudi Pharm J 25(1):8–17

    Article  PubMed  Google Scholar 

  • Harisa GI, Alomrani AH, Badran MM (2017b) Simvastatin-loaded nanostructured lipid carriers attenuate the atherogenic risk of erythrocytes in hyperlipidemic rats. Eur J Pharm Sci 96:62–71

    Article  CAS  PubMed  Google Scholar 

  • Harisa GI, Badran MM, Alanazi FK, Attia SM (2017c). An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artif Cells Nanomed Biotechnol 13:1–11

    Article  Google Scholar 

  • Herring JM, McMichael MA, Smith SA (2013) Microparticles in health and disease. J Vet Intern Med 27(5):1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Hu CM, Fang RH, Luk BT, Chen KN, Carpenter C et al (2013) Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5(7):2664–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S (2014) Intracellular signal modulation by nanomaterials. Adv Exp Med Biol 811:111–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Janas AM, Sapoń K, Janas T, Stowell MH, Janas T (2016) Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta 1858(6):1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Jayachandran M, Miller VM, Heit JA, Owen WG (2012) Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 375(1–2):207–214

    Article  CAS  PubMed  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles: endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87

    CAS  PubMed  Google Scholar 

  • Kanninen KM, Bister N, Koistinaho J, Malm T (2016) Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta 1862(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Karamanidou T, Bourganis V, Kammona O, Kiparissides C (2016) Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine 11(22):3009–3032

    Article  CAS  PubMed  Google Scholar 

  • Kastelowitz N, Yin H (2014) Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. Chembiochem 15(7):923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Haney MJ, Zhao Y, Mahajan V et al (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3):655–564

    Article  CAS  PubMed  Google Scholar 

  • Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomed 7:1525–1541

    CAS  Google Scholar 

  • Kotmakçı MM, Çetintaş VB (2015) Extracellular vesicles as natural nanosized delivery systems for small-molecule drugs and genetic material: steps towards the future nanomedicines. J Pharm Pharm Sci 18(3):396–413

    Article  PubMed  Google Scholar 

  • Kou L, Sun J, Zhai Y, He Z (2013) The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8:1–10

    Article  CAS  Google Scholar 

  • Kumar D, Sharma D, Singh G, Singh M, Rathore MS (2012) Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN Pharm 2012:474830

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ (2013) Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 5(18):8307–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai RC, Yeo RW, Tan KH, Lim SK (2013) Exosomes for drug delivery a novel application for the mesenchymal stem cell. Biotechnol Adv 31(5):543–551

    Article  CAS  PubMed  Google Scholar 

  • Lakhal S, Wood MJ (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bio Essays 33(10):441–737

    Google Scholar 

  • Loirand G, Sauzeau V, Pacaud P (2013) Small G proteins in the cardiovascular system: physiological and pathological aspects. Physiol Rev 93(4):1659–1720

    Article  CAS  PubMed  Google Scholar 

  • Lovren F, Verma S (2013) Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem 59(8):1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220(Pt B):600–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

  • Mishra AR, Zheng J, Tang X, Goering PL (2016) Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent. Toxicol Sci 150(2):473–487

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy LA, Pink RC, Carter R (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 4:3

    Google Scholar 

  • Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B (2014) Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32(1):32–45

    Article  CAS  PubMed  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 6(9 Suppl1):51–63

    Google Scholar 

  • Orenbuch A, Shulman Y, Lipstein N, Bechar et al (2012) Inhibition of exocytosis or endocytosis blocks activity-dependent redistribution of synapsin. J Neurochem 20(2):248–258

    Article  Google Scholar 

  • Panariti A, Miserocchi G, Rivolta I (2012) The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JJ, Loh YP (2008) Minireview: how peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 22(12):2583–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña K, Coblenz J, Kiselyov K (2015) Brief exposure to copper activates lysosomal exocytosis. Cell Calcium 57(4):257–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisetsky DS, Ullal AJ, Gauley J, Ning TC (2012) Microparticles as mediators and biomarkers of rheumatic disease. Rheumatology 51(10):1737–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prati C, Racadot E, Wendling D (2010) Microparticles and inflammatory joint disease. Joint Bone Spine 77(6):496–508

    Article  PubMed  Google Scholar 

  • Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A (2010) The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol 26(4):140–145

    Article  PubMed  Google Scholar 

  • Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 12(12):1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Randolph LM, Chien MP et al (2012) “Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. Chem Sci 3(5):1363–1380

    Article  CAS  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM et al (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 201–202:18–29

    Article  PubMed  Google Scholar 

  • Samie MA, Xu H (2014) Lysosomal exocytosis and lipid storage disorders. J Lipid Res 55(6):995–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y et al (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6:21933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM (2016) Compartmentalization and transport in synthetic vesicles. Front Bioeng Biotechnol 29:4–19

    Google Scholar 

  • Srivastava A, Babu A, Filant J, Moxley KM, Ruskin R, Dhanasekaran D (2016) Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J Biomed Nanotechnol 12(6):1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowell SR, Smith NH, Zimring JC, Fu X, Palmer AF et al (2013) Addition of ascorbic acid solution to stored murine red blood cells increases posttransfusion recovery and decreases microparticles and alloimmunization. Transfusion 53(10):2248–2257

    CAS  PubMed  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga N, Yoshioka Y, Ochiya T (2015) A novel platform for cancer therapy using extracellular vesicles. Adv Drug Deliv Rev 95:50–55

    Article  CAS  PubMed  Google Scholar 

  • Tramontano AF, O’Leary J, Black AD, Muniyappa R et al (2004) Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rhokinase pathway. Biochem Biophys Res Commun 320:34–38

    Article  CAS  PubMed  Google Scholar 

  • Vanwijk M, Vanbavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59(2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228

    Article  CAS  PubMed  Google Scholar 

  • Verma et al (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yu Y, Lu K, Yang M, Li Y, Zhou X, Sun (2017) Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomed 12:809–825

    Article  Google Scholar 

  • Wang P, Wang X, Wang L, Hou X, Liu W, Chen C (2015) Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater 16:034610

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Shao B, He Z, Ye T, Luo M, Sang Y et al (2015) Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res 25(2):237–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316

    Article  PubMed  Google Scholar 

  • Wu T et al (2015) Cell or cell membrane-based drug delivery systems. Theranostics 5(8):863

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanes RE, Tarn D, Hwang AA, Ferris DP, Sherman SP et al (2013) Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small 9(5):697–704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University for funding this work through the research Project Number (G-2017-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamaleldin I. Harisa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harisa, G.I., Badran, M.M., Alanazi, F.K. et al. Crosstalk of Nanosystems Induced Extracellular Vesicles as Promising Tools in Biomedical Applications. J Membrane Biol 250, 605–616 (2017). https://doi.org/10.1007/s00232-017-0003-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-0003-x

Keywords

Navigation