Skip to main content

Advertisement

Log in

Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type I (HIV-1) transactivator of transcription (TAT) is encoded by HIV-1. It is a peptide rich in basic amino acids and belongs to the protein transduction domain family. It has been found that HIV-1 TAT and its core peptide segment TAT47–57 play an important role in promoting the cellular uptake of coupled bioactive macromolecules, such as peptides, proteins, oligonucleotides, and drug molecules. HIV-1 TAT can also significantly increase the soluble expression of extrinsic proteins. However, the mechanism behind the cellular uptake of HIV-1 TAT-derived cell-penetrating peptide remains unclear. This review focuses on the research into HIV-1 TAT-derived cell-penetrating peptide over the last years. We briefly discuss TAT’s structural features, functions and applications, the mechanism of its cellular internalization, current challenges, and their possible solutions. At the end of this review, we provide a summary and predict the future research directions and potential applications of HIV-1 TAT when it is used as a cell-penetrating peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al Soraj M, He L, Peynshaert K, Cousaert J, Vercauteren D, Braeckmans K, De Smedt SC, Jones AT (2012) siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat. J Control Release 161:132–141

    Article  CAS  PubMed  Google Scholar 

  • Arya SK, Guo C, Josephs SF, Wong-Staal F (1985) Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229:69–73

    Article  CAS  PubMed  Google Scholar 

  • Baoum A, Ovcharenko D, Berkland C (2012) Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. Int J Pharm 427:134–142

    Article  CAS  PubMed  Google Scholar 

  • Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J (2002) In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci 22:5423–5431

    CAS  PubMed  Google Scholar 

  • Chang M, Chou JC, Lee HJ (2005) Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant Cell Physiol 46:482–488

    Article  CAS  PubMed  Google Scholar 

  • Chugh A, Eudes F (2007) Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochim Biophys Acta 1768:419–426

    Article  CAS  PubMed  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44:941–947

    Article  CAS  PubMed  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  • Drin G, Cottin S, Blanc E et al (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278:31192–31201

    Article  CAS  PubMed  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  CAS  PubMed  Google Scholar 

  • Elliott SL, Pye SJ, Schmidt C, Cross SM, Silins SL, Misko IS (1997) Dominant cytotoxic T lymphocyte response to the immediate-early trans-activator protein, BZLF1, in persistent type A or B Epstein-Barr virus infection. J Infect Dis 176:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Ezhevsky SA, Nagahara H, Vocero-Akbani AM, Gius DR, Wei MC, Dowdy SF (1997) Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. PNAS 94:10699–10704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer R, Fotin-Mleczek M, Hufnagel H et al (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem 6:2126–2142

    Article  CAS  PubMed  Google Scholar 

  • Fisher AG, Feinberg MB, Josephs SF et al (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320:367–371

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Fretz MM, Koning GA, Mastrobattista E et al (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665:48–56

    Article  CAS  PubMed  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Gump JM, June RK, Dowdy SF (2010) Revised role of glycosaminoglycans in TAT protein transduction domain-mediated cellular transduction. J Biol Chem 285:1500–1507

    Article  CAS  PubMed  Google Scholar 

  • He HC, Liu ST, Pan JR, Fu R, Chen J, Chen GR, Rao PF (2006) Possible mechanism of transmembrane of TAT-PTD fusion protein. Chin J Biochem Mol Biol 22:704–710

    CAS  Google Scholar 

  • Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, Hou L, Zhang Q (2012) Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 33:9246–9258

    Article  CAS  PubMed  Google Scholar 

  • Kamei N, Nielsen EJ, el Khafagy S, Takeda-Morishita M (2013) Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther Deliv 4:315–326

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Jeon C, Kim JH, Kim MS, Yoon CH, Choi IS, Kim SH, Bae YS (2006) Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo. Exp Cell Res 312:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Alexander-Katz A (2013) Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano 7:10799–10808

    Article  CAS  PubMed  Google Scholar 

  • Mae M, Langel U (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 6:509–514

    Article  PubMed  Google Scholar 

  • Maiolo JR 3rd, Ottinger EA, Ferrer M (2004) Specific redistribution of cell-penetrating peptides from endosomes to the cytoplasm and nucleus upon laser illumination. J Am Chem Soc 126:15376–15377

    Article  CAS  PubMed  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Niwa M, Takeuchi T et al (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES (2012) Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 80:639–646

    Article  CAS  PubMed  Google Scholar 

  • Ogris M, Carlisle RC, Bettinger T, Seymour LW (2001) Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J Biol Chem 276:47550–47555

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Wang GX, Liu F (2014) Research and application of a new macro molecular nano-carrier—cell penetrating peptides. Chin J Cell Biol 36:1169–1177

    CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  CAS  PubMed  Google Scholar 

  • Richard JP, Melikov K, Brooks H et al (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  CAS  PubMed  Google Scholar 

  • Rothbard J, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Saika H, Toki S (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun 25:3144–3146

    Article  Google Scholar 

  • Schwarze SR, Dowdy SF (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21:45–48

    Article  CAS  PubMed  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269:494–501

    Article  CAS  PubMed  Google Scholar 

  • Subrizi A, Tuominen E, Bunker A et al (2012) Tat(48–60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 158:277–285

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, Kadowaki N, Kodama T, Tachibana K, Maruyama K (2009) A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. J Control Release 133:198–205

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Lan KH, Yao J, Lu CH, Sun M, Neal CL, Lu J, Yu D (2006) Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res 66:3764–3772

    Article  CAS  PubMed  Google Scholar 

  • Tunnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC (2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. Faseb J 20:1775–1784

    Article  PubMed  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  CAS  PubMed  Google Scholar 

  • Violini S, Sharma V, Prior JL, Dyszlewski M, Piwnica-Worms D (2002) Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry 41:12652–12661

    Article  CAS  PubMed  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  PubMed  Google Scholar 

  • Vocero-Akbani AM, Heyden NV, Lissy NA, Ratner L, Dowdy SF (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med 5:29–33

    Article  CAS  PubMed  Google Scholar 

  • Wadia JS, Dowdy SF (2005) Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 57:579–596

    Article  CAS  PubMed  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  CAS  PubMed  Google Scholar 

  • Wattiaux R, Gentinne F, Jadot M, Dubois F, Wattiaux-De Coninck S (1993) Chloroquine allows to distinguish between hepatocyte lysosomes and sinusoidal cell lysosomes. Biochem Biophys Res Commun 190:808–813

    Article  CAS  PubMed  Google Scholar 

  • Wu YH, Zhang CG (2010) Research progress of HIV-1 TAT protein transduction peptide. China Biotechnology 30:66–73

    CAS  Google Scholar 

  • Wu Y, Ren C, Gao Y, Hou B, Chen T, Zhang C (2010) A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids 39:811–820

    Article  CAS  PubMed  Google Scholar 

  • Yamano S, Dai J, Yuvienco C et al (2011) Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J Control Release 152:278–285

    Article  CAS  PubMed  Google Scholar 

  • Yamano S, Dai J, Hanatani S et al (2014) Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials 35:1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Zhang LX, Zhang SX (2008) Mechanism of cell-penetrating peptides-mediated internalization and its application. Chin J Biochem Mol Biol 24:1092–1096

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank all of the participants involved in this project. This work was funded by the National Natural Science Foundation of China (81373491 and 81302750). This work was also supported by Xiangya Hospital of Central South University, Department of Pharmacy of Central South University, Institute of Clinical Pharmacology of Central South University, and Institute of Hospital Pharmacy of Central South University. The authors of this manuscript confirm that this article content has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boting Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Peng, Q., Wang, P. et al. Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide. J Membrane Biol 250, 115–122 (2017). https://doi.org/10.1007/s00232-016-9940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9940-z

Keywords

Navigation