Skip to main content

Advertisement

Log in

Application of Peak Intensity Analysis to Measurements of Protein Binding to Lipid Vesicles and Erythrocytes Using Fluorescence Correlation Spectroscopy: Dependence on Particle Size

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool for investigation of processes accompanied by changes in the mobility of molecules and complexes. In the present work, peak intensity analysis (PIA) in combination with the solution stirring using FCS setup was applied to explore the interaction between fluorescently labeled protein ligands and corresponding receptors located on membranes. In the system composed of biotinylated liposomes and fluorescently labeled streptavidin as a ligand, PIA allowed us to determine the optimum receptor concentration and demonstrate the essential dependence of the binding efficacy on the length of the linker between the biotin group and the polar head group of the lipid. The binding was dependent on the size of liposomes which was varied by lipid extrusion through filters of different pore diameters. The sensitivity of the method was higher with the liposomes of larger sizes. The PIA approach can be applied not only to liposomes but also to relatively large objects, e.g., erythrocytes or Sepharose beads derivatized with lactose as a receptor for the binding of viscumin and ricin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FCS:

Fluorescence correlation spectroscopy

G(τ):

Autocorrelation functions

τ d :

Diffusion time

Stv:

Streptavidin

Rh-Stv:

Rhodamine-labeled streptavidin

Alexa-Stv, Rh-Stv:

Fluorescently-labeled streptavidin

Alexa-ricin:

Fluorescently-labeled Ricin

Alexa-viscumin:

Fluorescently-labeled viscumin

Lac-sepharose:

Sepharose beads derivatized with lactose

GM1:

Galactose-containing ganglioside

PE:

Phosphatidylethanolamine

Biotin-PE:

Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl)

Biotin-Cap-PE:

Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Cap biotinyl)

EggPC:

Egg yolk phosphatidylcholine

PBS:

Phosphate-buffered saline

References

  • Andersen OS (1984) Gramicidin channels. Annu Rev Physiol 46:531–548

    Article  CAS  PubMed  Google Scholar 

  • Antonenko YN, Perevoshchikova IV, Davydova LI, Agapov IA, Bogush VG (2010) Interaction of recombinant analogs of spider silk proteins 1F9 and 2E12 with phospholipid membranes. Biochimica et Biophysica Acta-Biomembranes 1798:1172–1178

    Article  CAS  Google Scholar 

  • Antonenko YN, Perevoshchikova IV, Rokitskaya TI, Simonyan RA, Tashlitsky VV, Skulachev VP (2012) Effect of liposomes on energy-dependent uptake of the antioxidant SkQR1 by isolated mitochondria. J Bioenerg Biomembr 44:453–460

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JU, Fiete D (1979) Structural determinants of ricinus-communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 254:9795–9799

    CAS  PubMed  Google Scholar 

  • Baldwin RL (1957) Boundary spreading in sedimentation-velocity experiments. V. Measurement of the diffusion coefficient of bovine albumin by Fujita’s equation. Biochem J 65:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blicher A, Wodzinska K, Fidorra M, Winterhalter M, Heimburg T (2009) The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys J 96:4581–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin G, Margeat E, Carvalho K, Royer CA, Roy C, Picart C (2008) Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate. Biophys J 94:1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blome MC, Petro KA, Schengrund CL (2010) Surface plasmon resonance analysis of ricin binding to plasma membranes isolated from NIH 3T3 cells. Anal Biochem 396:212–216

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann U, Pastan I (1994) Immunotoxins against cancer. Biochim Biophys Acta 1198:27–45

    CAS  PubMed  Google Scholar 

  • Busath DD (1993) The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol 55:473–501

    Article  CAS  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  • Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  CAS  PubMed  Google Scholar 

  • Hladky SB, Haydon DA (1984) Ion Movements in Gramicidin Channels. Curr Topics Membr Transport 21:327–372

    Article  CAS  Google Scholar 

  • Horner A, Goetz F, Tampe R, Klussmann E, Pohl P (2012) Mechanism for targeting the A-kinase anchoring protein AKAP18 delta to the membrane. J Biol Chem 287:42495–42501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodenko BN, Hoek JB, Westerhoff HV (2000) Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol 10:173–178

    Article  CAS  PubMed  Google Scholar 

  • Levi V, Ruan Q, Kis-Petikova K, Gratton E (2003) Scanning FCS, a novel method for three-dimensional particle tracking. Biochem Soc Trans 31:997–1000

    Article  CAS  PubMed  Google Scholar 

  • Lord JM, Roberts LM (1996) The intracellular transport of ricin: why mammalian cells are killed and how ricinus cells survive. Plant Physiol Biochem 34:253–261

    CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD (1994) Ricin: structure, mode of action, and some current applications. FASEB J 8:201–208

    CAS  PubMed  Google Scholar 

  • Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurements by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  • McCloskey MA, Poo MM (1986) Rates of membrane-associated reactions—reduction of dimensionality revisited. J Cell Biol 102:88–96

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  PubMed  Google Scholar 

  • Melo AM, Prieto M, Coutinho A (2011) The effect of variable liposome brightness on quantifying lipid-protein interactions using fluorescence correlation spectroscopy. Biochimica et Biophysica Acta-Biomembranes 1808:2559–2568

    Article  CAS  Google Scholar 

  • Meyer T, Schindler H (1988) Particle counting by fluorescence correlation spectroscopy—simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys J 54:983–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton ER, Rhoades E (2010) Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys J 99:2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moisenovich M, Tonevitsky A, Agapov I, Niwa H, Schewe H, Bereiter-Hahn J (2002) Differences in endocytosis and intracellular sorting of ricin and viscumin in 3T3 cells. Eur J Cell Biol 81:529–538

    Article  CAS  Google Scholar 

  • Moisenovich M, Tonevitsky A, Maljuchenko N, Kozlovskaya N, Agapov I, Volknandt W, Bereiter-Hahn J (2004) Endosomal ricin transport: involvement of Rab4- and Rab5-positive compartments. Histochem Cell Biol 121:429–439

    Article  CAS  PubMed  Google Scholar 

  • Muzykantov VR, Sakharov DV, Smirnov MD, Samokhin GP, Smirnov VN (1986) Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. Biochim Biophys Acta 884:355–362

    Article  CAS  PubMed  Google Scholar 

  • O’Hare M, Roberts LM, Lord JM (1992) Biological activity of recombinant ricinus communis agglutinin a chain produced in escherichia coli. FEBS Lett. 299: 209-12 *LHC: Ha 76,Ha 9

  • Paul SS, Sil P, Haldar S, Mitra S, Chattopadhyay K (2015) Subtle change in the charge distribution of surface residues may affect the secondary functions of cytochrome c. J Biol Chem 290:14476–14490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perevoshchikova IV, Zorov DB, Antonenko YN (2008) Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: tetramethylrhodamine uptake by isolated mitochondria. Biochim Biophys Acta 1778:2182–2190

    Article  CAS  PubMed  Google Scholar 

  • Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Pohl P, Saparov SM, Pohl EE, Evtodienko VY, Agapov II, Tonevitsky AG (1998) Dehydration of model membranes induced by lectins from ricinus communis and viscum album. Biophys J 75:2868–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramanik A, Thyberg P, Rigler R (2000) Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy. Chem Phys Lipids 104:35–47

    Article  CAS  PubMed  Google Scholar 

  • Pu MM, Fang XM, Redfield AG, Gershenson A, Roberts MF (2009) Correlation of vesicle binding and phospholipid dynamics with phospholipase C activity insights into phosphatidylcholine activation and surface dilution inhibition. J Biol Chem 284:16099–16107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokitskaya TI, Kotova EA, Antonenko YN (2003) Tandem gramicidin channels cross-linked by streptavidin. J Gen Physiol 121:463–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusu L, Gambhir A, Mclaughlin S, Radler J (2004) Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles. Biophys J 87:1044–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandvig K, Vandeurs B (1994) Endocytosis and intracellular sorting of ricin and shiga toxin. FEBS Lett 346:99–102

    Article  CAS  PubMed  Google Scholar 

  • Sandvig K, Olsnes S, Pihl A (1976) Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 251:3977–3984

    CAS  PubMed  Google Scholar 

  • Separovic F, Barker S, Delahunty M, Smith R (1999) NMR structure of C-terminally tagged gramicidin channels. Biochim Biophys Acta 1416:48–56

    Article  CAS  PubMed  Google Scholar 

  • Sorochkina AI, Kovalchuk SI, Omarova EO, Sobko AA, Kotova EA, Antonenko YN (2013) Peptide-induced membrane leakage by lysine derivatives of gramicidin A in liposomes, planar bilayers, and erythrocytes. Biochimica et Biophysica Acta-Biomembranes 1828:2428–2435

    Article  CAS  Google Scholar 

  • Utsumi T, Aizono Y, Funatsu G (1987) Receptor-mediated interaction of ricin with the lipid bilayer of ganglioside Gm1-liposomes. FEBS Lett 216:99–103

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Kusters I, Velasquez J, Mika JT, Krasnikov V, Driessen AJ, Poolman B (2008) Dual-color fluorescence-burst analysis to study pore formation and protein-protein interactions. Methods 46:123–130

    Article  PubMed  Google Scholar 

  • van den Bogaart G, Mika JT, Krasnikov V, Poolman B (2007) The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 93:154–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88

    Article  CAS  PubMed  Google Scholar 

  • Weissman M, Schindler H, Feher G (1976) Determination of molecular-weights by fluctuation spectroscopy—application to DNA. Proc Natl Acad Sci USA 73:2776–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhouse G, King L, Wieczorek L, Osman P, Cornell B (1999) The ion channel switch biosensor. J Mol Recognit 12:328–334

    Article  CAS  PubMed  Google Scholar 

  • Zakharov SD, Lindeberg M, Cramer WA (1996) Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Biochemistry 38:11325–11332

    Article  Google Scholar 

  • Zhao S, Reichert WM (1992) Influence of biotin lipid surface density and accessibility on avidin binding to the tip of an optical fiber sensor. Langmuir 8:2785–2791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexander Vasiliev for the help in conducting several experiments, Wladas Kozlovsky, Liubov Safonova, and Victor Orlov for technical assistance. This work was financially supported by the Russian Foundation for Basic Research 16-34-01308 (to A.A.R., the isolation and purification of the lectins section), and the Russian Science Foundation 16-14-10025 (to Y.N.A., functional FCS measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Antonenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, Y.N., Lapashina, A.S., Kotova, E.A. et al. Application of Peak Intensity Analysis to Measurements of Protein Binding to Lipid Vesicles and Erythrocytes Using Fluorescence Correlation Spectroscopy: Dependence on Particle Size. J Membrane Biol 250, 77–87 (2017). https://doi.org/10.1007/s00232-016-9938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9938-6

Keywords

Navigation