Skip to main content
Log in

A Characeae Cells Plasma Membrane as a Model for Selection of Bioactive Compounds and Drugs: Interaction of HAMLET-Like Complexes with Ion Channels of Chara corallina Cells Plasmalemma

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Interaction of a HAMLET-like La–OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage–clamp technique was used to study Ca2+ and Cl transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La–OA complex has an inhibiting effect on Ca2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La–OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson M, Mossberg AK, Simon HU, Mograbi B, Svanborg C (2009) HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 124:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Atri MS, Saboury AA, Moosavi-Movahedi AA, Goliaei B, Sefidbakht Y, Alijanvand HH, Sharifzadeh A, Niasari-Naslaji A (2011) Structure and stability analysis of cytotoxic complex of camel alpha-lactalbumin and unsaturated fatty acids produced at high temperature. J Biomol Struct Dyn 28:919–928

    Article  CAS  PubMed  Google Scholar 

  • Baumann A, Gjerde AU, Ying M, Svanborg C, Holmsen H, Glomm WR, Martinez A, Halskau O (2012) HAMLET forms annular oligomers when deposited with phospholipid monolayers. J Mol Biol 418:90–102

    Article  CAS  PubMed  Google Scholar 

  • Berestovsky GN, Kataev AA (2005) Voltage-gated calcium and Ca2+ - activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Biophys J 34:973–986

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann CR, Heegaard CW, Petersen TE, Jensenius JC, Thiel S (2011) The toxicity of bovine alpha-lactalbumin made lethal to tumor cells is highly dependent on oleic acid and induces killing in cancer cell lines and noncancer-derived primary cells. FEBS J 278:1955–1967

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann CR, Thiel S, Otzen DE (2013) Protein-fatty acid complexes: biochemistry, biophysics and function. FEBS J 280:1733–1749

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  CAS  PubMed  Google Scholar 

  • Cury-Boaventura MF, Kanunfre CC, Gorjao R, de Lima TM, Curi R (2006) Mechanisms involved in Jurcat cell death induced by oleic and linoleic acids. Clin Nutr 25:1004–1014

    Article  CAS  Google Scholar 

  • Fontana A, Spolaore B, de Polverino LP (2013) The biological activities of protein/oleic acid complexes reside in the fatty acid. Biochim Biophys Acta 1834:1125–1143

    Article  CAS  PubMed  Google Scholar 

  • Garcia ML, King VF, Shevell JL, Slaughter RS, Suarez-Kurtz G, Winquist RJ, Kaczorowski GJ (1990) Amiloride analogs inhibit L-type calcium channels and display calcium entry blocker activity. J Biol Chem 265:3763–3771

    CAS  PubMed  Google Scholar 

  • Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43

    Article  CAS  PubMed  Google Scholar 

  • Hakansson A, Zhivotovsky B, Orrenius S, Sabharwal H, Svanborg C (1995) Apoptosis induced by a human milk protein. Proc Natl Acad Sci USA 92:8064–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C (2011) Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 6:e17717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille (2001) Ion channels of excitable membranes. Sinauer, Sunderland M

    Google Scholar 

  • Hoque M, Dave S, Gupta P, Saleemuddin M (2013) Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action. PLoS One 8:e68390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque M, Nanduri R, Gupta J, Mahajan S, Gupta P, Saleemuddin M (2015) Oleic acid complex of bovine alpha-lactalbumin induces eryptosis in human and other erythrocytes by a Ca-independent mechanism. Biochim Biophys Acta 1850:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Johnke M, Petersen TE (2012) The alpha-lactalbumin/oleic acid complex and its cytotoxic activity. In: Hurley WL (ed) Milk protein, 119–144 (http://cdn.intechopen.com/pdfs-wm/38827.pdf)

  • Kaetzel MA, Chan HC, Dubinsky WP, Dedman JR, Nelson DJ (1994) A role for annexin IV in epithelial cell function. Inhibition of calcium-activated chloride conductance. J Biol Chem 269:5297–5302

    CAS  PubMed  Google Scholar 

  • KamijimaT Ohmura A, Sato T, Akimoto K, Itabashi M, Mizuguchi M, Kamiya M, Kikukawa T, Aizawa T, Takahashi M, Kawano K, Demura M (2008) Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem Biophys Res Commun 376:211–214

    Article  CAS  Google Scholar 

  • Kaplanas RI, Antanavitchus AI (1975) Isolation and purification of alpha-lactalbumin, the component of lactosesynthetase. Biokhimiia 40:584–587

    CAS  PubMed  Google Scholar 

  • Kaspersen JD, Pedersen JN, Hansted JG, Nielsen SB, Sakthivel S, Wilhelm K, Nemashkalova EL, Permyakov SE, Permyakov EA, Pinto Oliveira CL, Morozova-Roche LA, Otzen DE, Pedersen JS (2014) Generic structures of cytotoxic liprotides: nano-sized complexes with oleic acid cores and shells of disordered proteins. ChemBioChem 15:2693–2702

    Article  CAS  PubMed  Google Scholar 

  • Kataev AA, Zherelova OM, Berestovsky GN (1984) Ca2+- induced activation and irreversible inactivation of chloride channels in the perfused plasmalemma of Nitellopsis obtusa. Gen Physiol Biophys 3:447–462

    CAS  PubMed  Google Scholar 

  • Kataev AA, Zherelova OM, Grishchenko VM (2013) Effects of oleic acid on ionic channels of green alga Chara corallina. Biochemistry (Moscow) Suppl Ser A 7:141–147

    Article  Google Scholar 

  • Knyazeva EL, Grishchenko VM, Fadeev RS, Akatov VS, Permyakov SE, Permyakov EA (2008) Who is Mr. HAMLET? Interaction of human alpha-lactalbumin with monomeric oleic acid. Biochemistry 47:13127–13137

    Article  CAS  PubMed  Google Scholar 

  • Kogteva GS, Bezuglov VV (1998) Unsaturated fatty acids as endogenous bioregulators. Biochemistry (Moscow) 63:4–12

    CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  • Kronman MJ, Andreotti RE (1964) Inter- and intramolecular interactions of α-Lactalbumin. I. The apparent heterogeneity at acid pH. Biochemistry 3:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  CAS  PubMed  Google Scholar 

  • Liskova K, Autym MAE, Chaurin V, Min S, Mok KH, O’Brien N, Kelly AL, Brodkorb A (2011) Cytotoxic complexes of sodium oleate with β-lactoglobulin. Eur J Lipid Sci Technol 113:1207–1218

    Article  CAS  Google Scholar 

  • Lord CE, Gunawardena AH (2012) Programmed cell death in C. elegans, mammals and plants. Eur J Cell Biol 91:603–613

    Article  CAS  PubMed  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell as result of activation of calcium and chloride channels. J Membr Biol 72:43–48

    Article  Google Scholar 

  • Moczydlowski E, Lucchesi K, Ravindran A (1988) An emerging pharmacology of peptide toxins targeted against potassium channels. J Membr Biol 105:95–111

    Article  CAS  PubMed  Google Scholar 

  • Mok KH, Pettersson J, Orrenius S, Svanborg C (2007) HAMLET, protein folding, and tumor cell death. Biochem Biophys Res Commun 354:1–7

    Article  CAS  PubMed  Google Scholar 

  • Mossberg AK, Hun MK, Morozova-Roche LA, Svanborg C (2010a) Structure and function of human alpha-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. FEBS J 277:4614–4625

    Article  CAS  PubMed  Google Scholar 

  • Mossberg AK, Puchades M, Halskau O, Baumann A, Lanekoff I, Chao Y, Martinez A, Svanborg C, Karlsson R (2010b) HAMLET interacts with lipid membranes and perturbs their structure and integrity. PLoS One 5:e9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Permyakov SE, Knyazeva EL, Leonteva MV, Fadeev RS, Chekanov AV, Zhadan AP, Hakansson AP, Akatov VS, Permyakov EA (2011) A novel method for preparation of HAMLET-like protein complexes. Biochimie 93:1495–1501

    Article  CAS  PubMed  Google Scholar 

  • Permyakov SE, Knyazeva EL, Khasanova LM, Fadeev RS, Zhadan AP, Roche-Hakansson H, Hakansson AP, Akatov VS, Permyakov EA (2012) Oleic acid is a key cytotoxic component of HAMLET-like complexes. Biol Chem 393:85–92

    Article  CAS  PubMed  Google Scholar 

  • Pettersson J, Mossberg AK, Svanborg C (2006) alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death. Biochem Biophys Res Commun 345:260–270

    Article  CAS  PubMed  Google Scholar 

  • Pineros M, Tester M (1997) Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J Exp Bot 48:551–577

    Article  CAS  PubMed  Google Scholar 

  • Prevarskaya N, Skryma R, Shuba Y (2011) Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 11:609–618

    Article  CAS  PubMed  Google Scholar 

  • Rammer P, Groth-Pedersen L, Kirkegaard T, Daugaard M, Rytter A, Szyniarowski P, Hoyer-Hansen M, Povlsen LK, Nylandsted J, Larsen JE, Jaattela M (2010) BAMLET activates a lysosomal cell death program in cancer cells. Mol Cancer Ther 9:24–32

    Article  CAS  PubMed  Google Scholar 

  • Rath EM, Duff AP, Håkansson AP, Vacher CS, Guo Jun Liu, Knott RB, Bret Church W (2015) Structure and potencial cellular targets of HAMLET-like anti-cancer compounds made from milk components. J Phar Pharm Sci (www.cspsCanada.org) 18:773–824

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Hedrich R (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci 14:187–192

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Tazawa M (1987) Demonstration and characterization of Ca2+ channel in tonoplast-free cells of Nitellopsis obtuse. J Membr Biol 96:263–276

    Article  CAS  Google Scholar 

  • Shimada T, Somlyo AP (1992) Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol 100:27–44

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Tazawa M (1977) Control of membrane potential and excitability of Chara cells with ATP and Mg2+. J Membr Biol 37:167–192

    Article  CAS  Google Scholar 

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cells Struct Funct 19:263–278

    Article  CAS  Google Scholar 

  • Storm P, Klausen TK, Trulsson M, Ho CSJ, Dosnon M, Westergren T, Chao Y, Rydstrom A, Yang H, Pedersen SF, Svanborg C (2013) A unifying mechanism for cancer cell death through ion channel activation by HAMLET. PLoS One 8:e58578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson M, Hakansson A, Mossberg AK, Linse S, Svanborg C (2000) Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci USA 97:4221–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson M, Mossberg AK, Pettersson J, Linse S, Svanborg C (2003) Lipids as cofactors in protein folding: stereo-specific lipid-protein interactions are required to form HAMLET (human alpha-lactalbumin made lethal to tumor cells). Protein Sci 12:2805–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teres S, Barcelo-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escriba PV (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA 105:13811–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M (1990) Tansley Review No. 21 Plant ion channels: whole-cell and single channel studies. New Phytol 114:305–340

    Article  Google Scholar 

  • Tolin S, De FG, Spolaore B, Frare E, Canton M, de Polverino LP, Fontana A (2010) The oleic acid complexes of proteolytic fragments of alpha-lactalbumin display apoptotic activity. FEBS J 277:163–173

    Article  CAS  PubMed  Google Scholar 

  • Vukojevic V, Bowen AM, Wilhelm K, Ming Y, Ce Z, Schleucher J, Hore PJ, Terenius L, Morozova-Roche LA (2010) Lipoprotein complex of equine lysozyme with oleic acid (ELOA) interactions with the plasma membrane of live cells. Langmuir 26:14782–14787

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen H, Rundgren IM, Glomm WR, Halskau O (2011) Benchmarking different BAMLET-like preparations with respect to tryptophan exposure, interfacial activity, and effect on cell viability. J Bioanal Biomed. doi:10.4172/1948-593X.S5-003

    Google Scholar 

  • Wen H, Glomm WR, Halskau O (2013) Cytotoxicity of bovine alpha-lactalbumin: oleic acid complexes correlates with the disruption of lipid membranes. Biochim Biophys Acta 1828:2691–2699

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm K, Darinskas A, Noppe W, Duchardt E, Mok KH, Vukojevic V, Schleucher J, Morozova-Roche LA (2009) Protein oligomerization induced by oleic acid at the solid-liquid interface–equine lysozyme cytotoxic complexes. FEBS J 276:3975–3989

    Article  CAS  PubMed  Google Scholar 

  • Zherelova OM (1990) Verapamil-sensitive cation channels in the plasmalemma of perfused Nitellopsis obtusa cells. Comp Biochem Physiol A 96:173–176

    Article  Google Scholar 

  • Zherelova OM, Grishchenko VM, Chaylakhyan LM (1994) Blockers of Ca2+ channels in the plasmalemma of perfused Characeae cells. Comp Biochem Physiol C 107:475–480

    CAS  Google Scholar 

  • Zherelova OM, Kataev AA, Grishchenko VM, Knyazeva EL, Permyakov SE, Permyakov EA (2009) Interaction of antitumor alpha-lactalbumin-oleic acid complexes with artificial and natural membranes. J Bioenerg Biomembr 41:229–237

    Article  CAS  PubMed  Google Scholar 

  • Zherelova OM, Kataev AA, Grishchenko VM (2013) Possible mechanism of cytotoxicity of alpha-lactalbumin-oleic acid complexes. Dokl Biochem Biophys 448:46–48

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Grishchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataev, A., Zherelova, O. & Grishchenko, V. A Characeae Cells Plasma Membrane as a Model for Selection of Bioactive Compounds and Drugs: Interaction of HAMLET-Like Complexes with Ion Channels of Chara corallina Cells Plasmalemma. J Membrane Biol 249, 801–811 (2016). https://doi.org/10.1007/s00232-016-9930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9930-1

Keywords

Navigation