Skip to main content
Log in

Antioxidant Capacity of Gallic Acid in vitro Assayed on Human Erythrocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes. This result indicates that GA molecules are positioned in the outer monolayer of the red cell membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were selected as classes of phospholipids found in the outer and inner monolayers of the red cell membrane, respectively. X-ray diffraction and differential scanning calorimetry showed that GA was preferentially bound to DMPC bilayers. Experiments related to the antioxidant capacity of GA indicated that this compound offsets HClO oxidative capacity on DMPE bilayers. In addition, optical, scanning, defocusing microscopy, and hemolysis assays confirmed the protective capacity of GA against HClO deleterious effects on human red cells. As a conclusion, GA would be capable to block the access of oxidants into the lipid bilayer, and thus avoid their access into red cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GA:

Gallic acid

DMPC:

Dimyristoylphosphatidylcholine

DMPE:

Dimyristoylphosphatidylethanolamine

SEM:

Scanning electron microscopy

DM:

Defocusing microscopy

DSC:

Differential scanning calorimetry

HClO:

Hypochlorous acid

References

  • Abram V, Berlec B, Ota A, Šentjurc M, Blatnik P, Ulrih NP (2013) Effect of flavonoid structure on the fluidity of model lipid membranes. Food Chem 139:804–813

    Article  CAS  PubMed  Google Scholar 

  • Agero U, Mesquita LG, Neves BRA, Gazzinelli RT, Mesquita ON (2004) Defocusing microscopy. Microsc Res Tech 65:159–165

    Article  CAS  PubMed  Google Scholar 

  • Anjana J, Monika B, Shukla S (2007) Protective effect of Terminalis belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol 109:214–218

    Article  CAS  Google Scholar 

  • Battistelli M, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M, Gobbi P (2005) Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytical behavior. Eur J Histochem 49:243–254

    CAS  PubMed  Google Scholar 

  • Bonora S, Markarian SA, Trinchero A, Grigorian KR (2005) DSC study on the effect of dimethysulfoxide (DMSO) and diethylsulfoxide (DESO) on phospholipid liposomes. Thermochim Acta 433:19–26

    Article  CAS  Google Scholar 

  • Boon JM, Smith BD (2000) Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281

    Article  CAS  Google Scholar 

  • Budai M, Szabo Z, Szögyi M, Gro P (2002) Molecular interactions between DPPC and morphine derivates: a DSC and EPR study. Int J Pharm 50:239–250

    Google Scholar 

  • Carr AC, Vissers MCM, Domigan NM, Winterbourn CC (1997) Modification of red cell membrane lipids by hypochlorous acid and hemolysis by preformed lipid clorohydrins. Redox Rep 3:263–271

    Article  CAS  PubMed  Google Scholar 

  • Caturla N, Vewra-Samper E, Villalaín J, Reyes Mateo C, Micol V (2003) The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radical Biol Med 34:648–662

    Article  CAS  Google Scholar 

  • Chen JY, Huestis WH (1997) Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. Biochim Biophys Acta 1323:299–309

    Article  CAS  PubMed  Google Scholar 

  • Chiara D, Giorgia P, Federica M, Gianni Z, Gaetano B, Silvia M, Gianluca V (2005) Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis. Cancer Lett 26:17–25

    Google Scholar 

  • Devaux PF, Zachowsky A (1994) Maintenance and consequences of membrane phospholipids asymmetry. Chem Phys Lipids 73:107–120

    Article  CAS  Google Scholar 

  • Etcheverry S, Gallardo JM, Solano P, Suwalsky M, Mesquita ON, Saavedra C (2012) Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy. J Biomed Opt 17:106013

    Article  PubMed  Google Scholar 

  • Hawkins CL, Davies MJ (1998) Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. J Biochem 332:617–625

    Article  CAS  Google Scholar 

  • Hsiang C-Y, Hseu Y-C, Chang Y-C, Kumar KJ, Ho TY, Yang HI (2013) Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-Kb transgenic mice as evaluated in vivo bioluminescence imaging. Food Chem 136:426–434

    Article  CAS  PubMed  Google Scholar 

  • Hsu S-S, Chou C-T, Liao W-C, Shieh P, Kuo D-H, Kuo C-C, Jan C-R, Liang W-Z (2016) The effect of gallic acid on cytotoxicity, Ca2+ homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Chem Biol Interact 252:61–73

    Article  CAS  PubMed  Google Scholar 

  • Katsaras J, Tristram-Nagle S, Liu Y, Headrick RL, Fontes E, Mason PC, Nagle J (2000) Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys Rev E 61:5668–5677

    Article  CAS  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    Article  CAS  PubMed  Google Scholar 

  • Krogh R, Yunes R (2000) Structure-activity relationships for the analgesic property of gallic acid derivatives. Farmaco 55:730–735

    Article  CAS  PubMed  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    CAS  PubMed  Google Scholar 

  • Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583–585

    Article  CAS  PubMed  Google Scholar 

  • Lewis RN, McElhaney RN (1993) Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J 64:1081–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim G, Wortis M, Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. P Natl Acad Sci USA 99:16766–16769

    Article  CAS  Google Scholar 

  • Locatellia C, Filippin-Monteiro FB, Creczynski-Pasa TB (2013) Alkyl esters of gallic acid as anticancer agents: a review. Eur J Med Chem 60:233–239

    Article  CAS  Google Scholar 

  • Manrique-Moreno M, Londoño-Londoño J, Jemiola-Rzeminska M, Strzalka K, Villena F, Avello M, Suwalsky M (2014) Structure effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes. Biochim Biophys Acta 1838:266–277

    Article  CAS  PubMed  Google Scholar 

  • Mason PC, Nagle JF, Epand RM, Katsaras J (2001) Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase. Phys Rev E 63:309021–309024

    Article  CAS  Google Scholar 

  • Mesquita LG, Agero U, Mesquita ON (2006) Defocusing microscopy: an approach for red blood cell optics. Appl Phys Lett 88:133901

    Article  CAS  Google Scholar 

  • Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, Yasuda N et al (1999) Induction of apoptosis by gallic acid in luna cancer cells. Anticancer Drugs 10:845–851

    Article  CAS  PubMed  Google Scholar 

  • Ozgova S, Hermanek J, Gut I (2006) Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe ascorbate- and Fe- microsomal systems. Biochem Pharmacol 66:1127–1137

    Article  CAS  Google Scholar 

  • Panicker L (2006) Influence of the leprosy drug, dapsone on the model membrane dipalmitoyl phosphatidylethanolamine. Thermochim Acta 447:123–130

    Article  CAS  Google Scholar 

  • Sang S, Hou Z, Lambert JD, Yang CS (2005) Redox properties of tea polyphenols and related biological activities. Antioxid Redox Signal 7:1704–1714

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj S, Mohan A, Narayanan S, Sethuraman S, Krisnan UM (2013) Dose-dependent interaction of trans-resveratrol with biomembranes: effects on antioxidant property. J Med Chem 56:970–981

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam PST, Nair RP, De Benedetti A, Caldito G, Abreo F, Sunavala-Dossabhoy G (2016) Tousled kinase activator, gallic acid, promotes homologous recombinational repair and suppresses radiation cytotoxicity in salivary gland cells. Free Radical Biol Med 93:217–226

    Article  CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte induced interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwalsky M (1996) Phospholipid bilayers. In: Salamone JC (ed) Polymeric materials enciclopedia. CRC, Boca Raton, pp 5073–5078

    Google Scholar 

  • Suwalsky M, Villena F, Gallardo MJ (2015a) In vivo protective effects of resveratrol against oxidative damage in human erythrocytes. Biochim Biophys Acta 1848:76–82

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Jemiola-Rzeminska M, Astudillo C, Gallardo MJ, Stafforelli JP, Villena F, Strzalka K (2015b) An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane. Biochim Biophys Acta 1848:2829–2838

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi T, Fliss H (1994) Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. Am J Physiol 267:1597–1607

    Google Scholar 

  • Tulipani S, Alvarez-Suarez J, Busco F, Bompadre S, Quiles JL, Mezzetti B, Battino M (2011) Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chem 128:180–186

    Article  CAS  PubMed  Google Scholar 

  • Vissers M, Carr A, Chapman A (1998) Comparison of human red cells lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochem J 330:131–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vives MA, Infante MR, Garcia E, Selve C, Maugras M, Vinardell MP (1999) Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants. Chem Biol Interact 118:1–18

    Article  CAS  PubMed  Google Scholar 

  • Zavodnik IB, Lapshina EA, Zavodnik LB, Bartosz G, Soszynski M, Bryszewska M (2001) Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Bio Med 30:363–369

    Article  CAS  Google Scholar 

  • Zhongbing L, Guangjun N, Peter S, Belton C, Huiru T (2006) Structure-activity relationship analysis of antioxidant activity and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT (Projects 1130043 and 3140167). Calorimetric measurements were carried out using the instrument purchased, thanks to financial support of European Regional Development Fund (contract No. POIG.02.01.00-12-167/08, project Malopolska Centre of Biotechnology). The faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Suwalsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwalsky, M., Colina, J., Gallardo, M.J. et al. Antioxidant Capacity of Gallic Acid in vitro Assayed on Human Erythrocytes. J Membrane Biol 249, 769–779 (2016). https://doi.org/10.1007/s00232-016-9924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9924-z

Keywords

Navigation