Skip to main content
Log in

Lipid-Detergent Phase Transitions During Detergent-Mediated Liposome Solubilization

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We investigate the phase transition stages for detergent-mediated liposome solubilization of bio-mimetic membranes with the motivation of integrating membrane-bound Photosystem I into bio-hybrid opto-electronic devices. To this end, the interaction of two non-ionic detergents n-dodecyl-β-d-maltoside (DDM) and Triton X-100 (TX-100) with two types of phospholipids, namely DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol)), are examined. Specifically, solubilization processes for large unilamellar liposomes are studied with the aid of turbidity measurements, dynamic light scattering, and cryo-transmission electron microscopy imaging. Our results indicate that the solubilization process is well depicted by a three-stage model, wherein the lamellar-to-micellar transitions for DPhPC liposomes are dictated by the critical detergent/phospholipid ratios. The solubilization of DPhPC by DDM is devoid of formation of a “gel-like” phase. Furthermore, our results indicate that DDM is a stable candidate for DPhPC solubilization and proteoliposome formation. Finally, although the solubilization of DPPG with DDM indicated the familiar three-stage process, the same process with TX-100 indicate structural deformation of vesicles into complex network of kinetically trapped micro- and nanostructured arrangements of lipid bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahyayauch H, Collado MI, Alonso A, Goñi FM (2012) Lipid bilayers in the gel phase become saturated by Triton X-100 at lower surfactant concentrations than those in the fluid phase. Biophys J 102:2510–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Villena A, Goñi FM (1981) Lysis and reassembly of sonicated lecithin vesicles in the presence of triton X-100. FEBS Lett 123:200–204

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Jackman J, Wilson D, Jarvoll P, Alfredsson V, Okeyo G, Duran R (2011) Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers’ electrical stability. Colloids Surf B 82:550–561

    Article  CAS  Google Scholar 

  • Arnulphi C, Sot J, García-Pacios M, Arrondo J-LR, Alonso A, Goñi FM (2007) Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. Biophys J 93:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Toshima Y, Minamikawa H, Hato M, Suzuki K, Kamo N (1999) Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochim Biophy Acta BBA Biomembr 1421:91–102

    Article  CAS  Google Scholar 

  • Babnik B, Miklavčič D, Kandušer M, Hägerstrand H, Kralj-Iglič V, Iglič A (2003) Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8. Chem Phys Lipids 125:123–138

    Article  CAS  PubMed  Google Scholar 

  • Bayley H, Cronin B, Heron A, Holden MA, Hwang WL, Syeda R, Thompson J, Wallace M (2008) Droplet interface bilayers. Mol BioSyst 4:1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cladera J, Rigaud JL, Bottin H, Dunach M (1996) Functional reconstitution of photosystem I reaction center from cyanobacterium Synechocystis sp PCC6803 into liposomes using a new reconstitution procedure. J Bioenerg Biomembr 28:503–515

    Article  CAS  PubMed  Google Scholar 

  • Cladera J, Rigaud JL, Villaverde J, Dunach M (1997) Liposome solubilization and membrane protein reconstitution using Chaps and Chapso. Eur J Biochem 243:798–804

    Article  CAS  PubMed  Google Scholar 

  • Coelfen H, Harding SE, Boulter JM, Watts A (1996) Hydrodynamic examination of the dimeric cytoplasmic domain of the human erythrocyte anion transporter, band 3. Biophys J 71:1611–1615

    Article  CAS  Google Scholar 

  • De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131

    Article  PubMed  Google Scholar 

  • Deamer D, Bangham AD (1976) Large volume liposome by an ether vaporization method. Biochim Biophys Acta 443:629–634

    Article  CAS  PubMed  Google Scholar 

  • Douce R, Holtz RB, Benson AA (1973) Isolation and properties of envelope of spinach chloroplasts. J Biol Chem 248:7215–7222

    CAS  PubMed  Google Scholar 

  • Ege C, Lee KYC (2004) Insertion of azlzheimer’s Aβ40 peptide into lipid monolayers. Biophys J 87:1732–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard I, Slotboom DJ, Knol J, Lolkema JS, Konings WN (1996) Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus. Biochemistry 35:6150–6156

    Article  CAS  PubMed  Google Scholar 

  • Geertsma ER, Mahmood N, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    Article  CAS  PubMed  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Book  Google Scholar 

  • Golbeck JH (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, New York

    Google Scholar 

  • Gombos Z, Wada H, Varkonyi Z, Los DA, Murata N (1996) Characterization of the Fad12 mutant of Synechocystis that is defective in Δ12 acyl-lipid desaturase activity. Biochim Biophys Acta Lipids Lipid Metab 1299:117–123

    Article  Google Scholar 

  • Hagting A, Velde JVD, Poolman B, Konings WN (1997) Membrane topology of the di- and tripeptide transport protein of Lactococcus lactis. Biochemistry 36:6777–6785

    Article  CAS  PubMed  Google Scholar 

  • Hayat MA, Miller SE (1990) Negative staining. McGraw-Hill, New York

    Google Scholar 

  • Heerklotz H, Seelig J (2000) Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J 78:2435–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, McCaslin DR, Fries E, Tanford C (1979) Properties of detergents. Methods Enzymol 56:734–749

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Sue SC, Lyu PC, Wu WG (1997) Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys J 73:870–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415

    Article  CAS  PubMed  Google Scholar 

  • Koeppe RE, Andersen OS (1996) Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct 25:231–258

    Article  CAS  PubMed  Google Scholar 

  • Konovalov O, Myagkov I, Struth B, Lohner K (2002) Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study. Eur Biophy J 31:428–437

    Article  CAS  Google Scholar 

  • Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntsche J, Horst JC, Bunjes H (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm 417:120–137

    Article  CAS  PubMed  Google Scholar 

  • Lambert O, Levy D, Ranck J-L, Leblanc G, Rigaud J-L (1998) A new “gel-like” phase in dodecyl maltoside–lipid mixtures: implications in solubilization and reconstitution studies. Biophys J 74:918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine YK, Bailey AI, Wilkins MHF (1968) Multilayers of phospholipid biomolecular leaflets. Nature 220:577–578

    Article  CAS  PubMed  Google Scholar 

  • Levitan I, Christian AE, Tulenko TN, Rothblat GH (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lévy D, Gulik A, Bluzat A, Rigaud J-L (1992) Reconstitution of the sarcoplasmic reticulum Ca2+-ATPase: mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim Biophys Acta BBA Biomembr 1107:283–298

    Article  Google Scholar 

  • Lichtenberg D, Barenholz Y (2006) Liposomes: preparation, characterization, and preservation, methods of biochemical analysis. Wiley, New York

    Google Scholar 

  • Lichtenberg D, Robson RJ, Dennis EA (1983) Solubilization of phospholipids by detergents structural and kinetic aspects. Biochim Biophys Acta BBA Rev Biomembr 737:285–304

    Article  CAS  Google Scholar 

  • Lichtenberg D, Opatowski E, Kozlov MM (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim Biophys Acta BBA Biomembr 1508:1–19

    Article  CAS  Google Scholar 

  • Lichtenberg D, Ahyayauch H, Goni FM (2013a) The mechanism of detergent solubilization of lipid bilayers. Biophys J 105:1090

    Article  Google Scholar 

  • Lichtenberg D, Ahyayauch H, Alonso A, Goñi FM (2013b) Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci 38:85–93

    Article  CAS  PubMed  Google Scholar 

  • Lindsey H, Petersen NO, Chan SI (1979) Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim Biophys Acta BBA Biomembr 555:147–167

    Article  CAS  Google Scholar 

  • Lohner K, Latal A, Degovics G, Garidel P (2001) Packing characteristics of a model system mimicking cytoplasmic bacterial membranes. Chem Phys Lipids 111:177–192

    Article  CAS  PubMed  Google Scholar 

  • London E, Brown DA (2000) Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta BBA Biomembr 1508:182–195

    Article  CAS  Google Scholar 

  • Lopez O, Cocera M, Wehrli E, Parra JL, de la Maza A (1999) Solubilization of liposomes by sodium dodecyl sulfate: new mechanism based on the direct formation of mixed micelles. Arch Biochem Biophys 367:153–160

    Article  CAS  PubMed  Google Scholar 

  • Lopez O, Cocera M, Coderch L, Parra JL, Barsukov L, de la Maza A (2001) Octyl glucoside-mediated solubilization and reconstitution of liposomes: structural and kinetic aspects. J Phys Chem B 105:9879–9886

    Article  CAS  Google Scholar 

  • Lovejoy B, Akerfeldt KS, Degrado WF, Eisenberg D (1992) Crystallization of proton channel peptides. Protein Sci 1:1073–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiolamorgenthaler L, Eichenberger W, Boschetti A (1985) Isolation of chloroplast envelopes from chlamydomonas—lipid and polypeptide composition. Plant Sci 41:97–104

    Article  CAS  Google Scholar 

  • Milhiet P-E, Gubellini F, Berquand A, Dosset P, Rigaud J-L, Le Grimellec C, Levy D (2006) High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophys J 91:3268–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow MR, Temple S, Stewart J, Keough KMW (2007) Comparison of DPPC and DPPG environments in pulmonary surfactant models. Biophys J 93:164–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee D, May M, Vaughn M, Bruce BD, Khomami B (2010) Controlling the morphology of photosystem I assembly on thiol-activated Au substrates. Langmuir 26:16048–16054

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee D, May M, Khomami B (2011a) Detergent-protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J Colloid Interface Sci 358:477–484

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee D, Vaughn M, Khomami B, Bruce BD (2011b) Modulation of cyanobacterial photosystem I deposition properties on alkanethiolate Au substrate by various experimental conditions. Colloids Surf B Biointerfaces 88:181–190

    Article  CAS  PubMed  Google Scholar 

  • Nazari M, Kurdi M, Heerklotz H (2012) Classifying surfactants with respect to their effect on lipid membrane order. Biophys J 102:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabst G, Danner S, Karmakar S, Deutsch G, Raghunathan VA (2007) On the propensity of phosphatidylglycerols to form interdigitated phases. Biophys J 93:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar MM, Edwards K, Madden TD (1999) Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim Biophys Acta BBA Biomembr 1421:77–90

    Article  CAS  Google Scholar 

  • Pata V, Ahmed F, Discher DE, Dan N (2004) Membrane solubilization by detergent: resistance conferred by thickness. Langmuir 20:3888–3893

    Article  CAS  PubMed  Google Scholar 

  • Paternostre MT, Roux M, Rigaud JL (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27:2668–2677

    Article  CAS  PubMed  Google Scholar 

  • Patra SK, Alonso A, Goñi FM (1998) Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochim Biophys Acta BBA Biomembr 1373:112–118

    Article  CAS  Google Scholar 

  • Ribeiro AA, Dennis EA (1974) Effect of thermotropic phase transitions of dipalmitoylphosphatidylcholine on the formation of mixed micelles with Triton X-100. Biochim Biophys Acta BBA Biomembr 332:26–35

    Article  CAS  Google Scholar 

  • Rigaud JL, Levy D (2003) Reconstitution of membrane proteins into liposomes. Liposomes B 372:65–86

    Article  CAS  Google Scholar 

  • Rigaud JL, Paternostre MT, Bluzat A (1988) Mechanism of membrane-protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27:2677–2688

    Article  CAS  PubMed  Google Scholar 

  • Rigaud J-L, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta BBA Bioenerg 1231:223–246

    Article  Google Scholar 

  • Sanat K, Raghunathan VA, Satyajit M (2005) Phase behaviour of dipalmitoyl phosphatidylcholine (DPPC)-cholesterol membranes. J Phys Condens Matter 17:S1177

    Article  Google Scholar 

  • Sato N (2004) Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res 117:495–505

    Article  CAS  PubMed  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta BBA Biomembr 1666:105–117

    Article  CAS  Google Scholar 

  • Silvius JR (1992) Solubilization and functional reconstitution of biomembrane components. Annu Rev Biophys Biomol Struct 21:323–348

    Article  CAS  PubMed  Google Scholar 

  • Sokolov VS, Sokolenko EA, Sokolov AV, Dontsov AE, Chizmadzhev YA, Ostrovsky MA (2007) Interaction of pyridinium bis-retinoid (A2E) with bilayer lipid membranes. J Photochem Photobiol B 86:177–185

    Article  CAS  PubMed  Google Scholar 

  • Sorrenti A, Illa O, Ortuno RM (2013) Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 42:8200–8219

    Article  CAS  PubMed  Google Scholar 

  • Spassova M, Mellor IR, Petrov AG, Beattie KA, Codd GA, Vais H, Usherwood PNR (1995) Pores formed in lipid bilayers and in native membranes by Nodularin, a cyanobacterial toxin. Eur Biophys J 24:69–76

    Article  CAS  PubMed  Google Scholar 

  • Stuart MCA, Boekema EJ (2007) Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid–detergent systems. Biochim Biophys Acta BBA Biomembr 1768:2681–2689

    Article  CAS  Google Scholar 

  • Sudbrack TP, Archilha NL, Itri R, Riske KA (2011) Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs. J Phys Chem B 115:269–277

    Article  CAS  PubMed  Google Scholar 

  • Szoka F, Papahadjopoulos D (1980) Comprehensive properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  • Yang ZL, Su XH, Wu F, Gong YD, Kuang TY (2005) Photochemical activities of plant photosystem I particles reconstituted into phosphatidylglycerol liposomes. J Photochem Photobiol B Biol 78:125–134

    Article  CAS  Google Scholar 

  • Yasmann A, Sukharev S (2015) Properties of diphytanoyl phospholipids at the air–water interface. Langmuir 31:350–357

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University of Tennessee Advanced Microscopy and Imaging Center for instrument use, scientific and technical assistance. This work was funded by Sustainable Energy Education and Research Center (SEERC) at University of Tennessee, Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dibyendu Mukherjee or Bamin Khomami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niroomand, H., Venkatesan, G.A., Sarles, S.A. et al. Lipid-Detergent Phase Transitions During Detergent-Mediated Liposome Solubilization. J Membrane Biol 249, 523–538 (2016). https://doi.org/10.1007/s00232-016-9894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9894-1

Keywords

Navigation