Skip to main content

Advertisement

Log in

Shining Light on the Sprout of Life: Optogenetics Applications in Stem Cell Research and Therapy

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Optogenetics is the integration of genetics and optics to achieve gain or loss of function of well-defined events in specific cells of living tissue. As a versatile tool, upon light illumination, it allows fast control of precisely defined events in biological systems from single cell to different parts of whole tissue in freely moving animals. Taking advantage of this method, a multitude of studies have been published to understand brain functions and dysfunctions. Although from the beginning, it has been used to target neurons within the neural networks and to understand how specific neurons contribute to brain function, it gradually has been extended to other fields of biology such as stem cell research and therapy. With a combination of optogenetics and stem cells, new opportunities were opened up in stem cell biology and also its integration in new circuit as a cell-based treatment strategy for more common disorders like neurodegenerative and cardiovascular one. Recently, some studies showed that engineered stem cells expressing exogenous light-activated opsins can be used in stem cell biology including tracking the differentiation of stem cells, functional analysis of embryonic stem cell-derived graft, and testing the functional integration of induced pluripotent stem cell-derived neurons. With the advent of non-invasive approach, such as transcranial excitation or inhibition, optogenetics also holds promise for non-invasive control of engineered stem cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E (2011) Multiscale computational models for optogenetic control of cardiac function. Biophys J 101:1326–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avaliani N, Sørensen AT, Ledri M, Bengzon J, Koch P, Brüstle O, Deisseroth K, Kokaia M (2014) Optogenetics reveal delayed afferent synaptogenesis on grafted human-induced pluripotent stem cell-derived neural progenitors. Stem Cells 32:3088–3098

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Bryson JB, Machado CB, Crossley M, Stevenson D, Bros-Facer V, Burrone J, Greensmith L, Lieberam I (2014) Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344:94–97

    Article  CAS  PubMed  Google Scholar 

  • Byers B, Lee HJ, Liu J, Weitz AJ, Lin P, Zhang P, Shcheglovitov A, Dolmetsch R, Pera RR, Lee JH (2015) Direct in vivo assessment of human stem cell graft–host neural circuits. NeuroImage 114:328–337

    Article  PubMed  Google Scholar 

  • Colasante G, Lignani G, Rubio A, Medrihan L, Yekhlef L, Sessa A, Massimino L, Giannelli SG, Sacchetti S, Caiazzo M, Leo D (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell 17:719–734

    Article  CAS  PubMed  Google Scholar 

  • Cunningham M, Cho JH, Leung A, Savvidis G, Ahn S, Moon M, Lee PK, Han JJ, Azimi N, Kim KS, Bolshakov VY (2014) hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell 15:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain cell Biol 36:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P, Björklund A, Parmar M (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemphill J, Chou C, Chin JW, Deiters A (2013) Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 135:13433–13439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson S, Sumaroka A, Luo X, Cideciyan A (2013) Retinal optogenetic therapies: clinical criteria for candidacy. Clin Genet 84:175–182

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang HZ, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light cardiac optogenetics by cell delivery. Circulation 4:753–760

    PubMed  PubMed Central  Google Scholar 

  • Kato S, Kobayashi K, Inoue KI, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M, Kobayashi K (2010) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206

    Article  Google Scholar 

  • Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C (2011) Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29:528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushibiki T, Okawa S, Hirasawa T, Ishihara M (2015) Optogenetic control of insulin secretion by pancreatic beta-cells in vitro and in vivo. Gene Ther 22:553–559

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park J, Forget BG, Gaines P (2009) Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen Med 4:759–769

    Article  PubMed  Google Scholar 

  • Lengner CJ (2010) iPS cell technology in regenerative medicine. Ann NY Acad Sci 1192:38–44

    Article  CAS  PubMed  Google Scholar 

  • Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Manchanda M, McLeod CJ, Killu A, Asirvatham SJ (2013) Cardiac resynchronization therapy for patients with congenital heart disease: technical challenges. J Interv Card Electrophysiol 36:71–79

    Article  PubMed  Google Scholar 

  • Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen YJ, Stanley EG, Elefanty AG, Sasai Y (2013) Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussinovitch U, Gepstein L (2015) Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol 33:750–754

    Article  CAS  PubMed  Google Scholar 

  • Nussinovitch U, Shinnawi R, Gepstein L (2014) Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc Res 102:176–187

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer AM, Roska B, Häusser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815

    Article  CAS  PubMed  Google Scholar 

  • Paonessa F, Criscuolo S, Sacchetti S, Amoroso D, Scarongella H, Bisogni FP, Carminati E, Pruzzo G, Maragliano L, Cesca F, Benfenati F (2016) Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc Natl Acad Sci 113:E91–E100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piña-Crespo JC, Talantova M, Cho EG, Soussou W, Dolatabadi N, Ryan SD, Ambasudhan R, McKercher S, Deisseroth K, Lipton SA (2012) High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J Neurosci 32:15837–15842

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenfeld MH (2007) Contemporary pacemaker and defibrillator device therapy challenges confronting the general cardiologist. Circulation 115:638–653

    Article  PubMed  Google Scholar 

  • Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. doi:10.3389/fcell.2015.00002

    PubMed  PubMed Central  Google Scholar 

  • Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, Mosharov EV, Studer L (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209

    Article  CAS  PubMed  Google Scholar 

  • Stroh A, Tsai HC, Wang LP, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tønnesen J, Parish CL, Sørensen AT, Andersson A, Lundberg C, Deisseroth K, Arenas E, Lindvall O, Kokaia M (2011) Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One 6:e17560

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269

    Article  CAS  PubMed  Google Scholar 

  • Wang SJ, Weng CH, Xu HW, Zhao CJ, Yin ZQ (2014a) Effect of optogenetic stimulus on the proliferation and cell cycle progression of neural stem cells. J Membr Biol 247:493–500

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, He H, Li S, Liu D, Lan B, Hu M, Cao Y, Wang C (2014b) All-optical regulation of gene expression in targeted cells. Sci Rep 18:4

    Google Scholar 

  • Weick JP, Johnson MA, Skroch SP, Williams JC, Deisseroth K, Zhang SC (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weick JP, Liu Y, Zhang S-C (2011) Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc Natl Acad Sci 108:20189–20194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickersham IR, Sullivan HA, Seung HS (2013) Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun 15:4

    Google Scholar 

  • Xu Y, Hyun YM, Lim K, Lee H, Cummings RJ, Gerber SA, Bae S, Cho TY, Lord EM, Kim M (2014) Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci 111:6371–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Tu J, Pan JQ, Luo HL, Liu YH, Wan J, Zhang J, Wei PF, Jiang T, Chen YH, Wang LP (2013) Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death Dis 4:e893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Liu Y, Tu J, Wan J, Zhang J, Wu B, Chen S, Zhou J, Mu Y, Wang L (2014) Activated astrocytes enhance the dopaminergic differentiation of stem cells and promote brain repair through bFGF. Nat Commun. doi:10.1038/ncomms6627

    Google Scholar 

  • Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Mirzapour Delavar.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzapour Delavar, H., Karamzadeh, A. & Pahlavanneshan, S. Shining Light on the Sprout of Life: Optogenetics Applications in Stem Cell Research and Therapy. J Membrane Biol 249, 215–220 (2016). https://doi.org/10.1007/s00232-016-9883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9883-4

Keywords

Navigation