The Journal of Membrane Biology

, Volume 248, Issue 3, pp 497–503 | Cite as

Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers

  • Sanjay K. Upadhyay
  • Yukun Wang
  • Tangzhen Zhao
  • Jakob P. Ulmschneider


The membrane disruption and pore-forming mechanism of melittin has been widely explored by experiments and computational studies. However, the precise mechanism is still enigmatic, and further study is required to turn antimicrobial peptides into future promising drugs against microbes. In this study, unbiased microsecond (µs) time scale (total 17 µs) atomistic molecular dynamics simulation were performed on multiple melittin systems in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membrane to capture the various events during the membrane disorder produced by melittin. We observed bent U-shaped conformations of melittin, penetrated deeply into the membrane in all simulations, and a special double U-shaped structure. However, no peptide transmembrane insertion, nor pore formation was seen, indicating that these processes occur on much longer timescales, and suggesting that many prior computational studies of melittin were not sufficiently unbiased.


Antimicrobial peptides Melittin Lipid bilayer membranes Molecular dynamics simulations 



This research was supported by a grant from the National Natural Science Foundation of China (91230105) and a 1000 Plan’s Program for Young Talents (13Z127060001) to J.P.U.

Supplementary material

232_2015_9807_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1812 kb)


  1. Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837PubMedCentralCrossRefPubMedGoogle Scholar
  2. Andersson M, Ulmschneider JakobP, Ulmschneider MartinB, White StephenH (2013) Conformational states of melittin at a bilayer interface. Biophys J 104:L12–L14PubMedCentralCrossRefPubMedGoogle Scholar
  3. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  4. Berneche S, Nina M, Roux B (1998) Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J 75:1603–1618PubMedCentralCrossRefPubMedGoogle Scholar
  5. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefPubMedGoogle Scholar
  6. Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30CrossRefPubMedGoogle Scholar
  7. Brown LR, Lauterwein J, Wuthrich K (1980) High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta 622:231–244CrossRefPubMedGoogle Scholar
  8. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRefPubMedGoogle Scholar
  9. Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. J Am Chem Soc 129:1420–1427CrossRefPubMedGoogle Scholar
  10. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641CrossRefPubMedGoogle Scholar
  11. Demchenko AP, Kostrzhevskaia EG (1986) Melittin: structure, properties, interaction with a membrane. Ukr Biokhim Zh 58:92–103PubMedGoogle Scholar
  12. Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hristova K, Dempsey CE, White SH (2001) Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys J 80(2):801–811PubMedCentralCrossRefPubMedGoogle Scholar
  14. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352CrossRefPubMedGoogle Scholar
  15. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28Google Scholar
  16. Irudayam SJ, Berkowitz ML (2011) Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores. Biochim Biophys Acta 1808:2258–2266CrossRefPubMedGoogle Scholar
  17. Irudayam SJ, Berkowitz ML (2012) Binding and reorientation of melittin in a POPC bilayer: computer simulations. Biochim Biophys Acta 1818:2975–2981CrossRefPubMedGoogle Scholar
  18. Iwadate M, Asakura T, Williamson MP (1998) The structure of the melittin tetramer at different temperatures—an NOE-based calculation with chemical shift refinement. Eur J Biochem 257:479–487CrossRefPubMedGoogle Scholar
  19. Langham AA, Ahmad AS, Kaznessis YN (2008) On the nature of antimicrobial activity: a model for protegrin-1 pores. J Am Chem Soc 130:4338–4346PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lee MT, Sun TL, Hung WC, Huang HW (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci USA 110:14243–14248PubMedCentralCrossRefPubMedGoogle Scholar
  21. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161CrossRefPubMedGoogle Scholar
  22. Leveritt JM III (2015) The structure of a melittin-stabilized toroidal pore. Biophys J 108(2):249a. doi: 10.1016/j.bpj.2014.11.1380 CrossRefGoogle Scholar
  23. Lin JH, Baumgaertner A (2000) Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J 78:1714–1724PubMedCentralCrossRefPubMedGoogle Scholar
  24. Lohner K, Blondelle SE (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen 8:241–256CrossRefPubMedGoogle Scholar
  25. Manna M, Mukhopadhyay C (2009) Cause and effect of melittin-induced pore formation: a computational approach. Langmuir 25:12235–12242CrossRefPubMedGoogle Scholar
  26. Matsuzaki K, Yoneyama S, Miyajima K (1997) Pore formation and translocation of melittin. Biophys J 73:831–838PubMedCentralCrossRefPubMedGoogle Scholar
  27. Park Y, Hahm KS (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol 38:507–516CrossRefPubMedGoogle Scholar
  28. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854PubMedCentralCrossRefPubMedGoogle Scholar
  29. Rex S (1996) Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem 58(1–2):75–85CrossRefPubMedGoogle Scholar
  30. Sanchez-Martinez S, Huarte N, Maeso R, Madan V, Carrasco L, Nieva JL (2008) Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47:10731–10739CrossRefPubMedGoogle Scholar
  31. Santo KP, Irudayam SJ, Berkowitz ML (2013) Melittin creates transient pores in a lipid bilayer: results from computer simulations. J Phys Chem B 117:5031–5042CrossRefPubMedGoogle Scholar
  32. Schwarz G, Zong RT, Popescu T (1992) Kinetics of melittin induced pore formation in the membrane of lipid vesicles. Biochim Biophys Acta 1110(1):97–104CrossRefPubMedGoogle Scholar
  33. Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317CrossRefPubMedGoogle Scholar
  34. Sharon M, Oren Z, Shai Y, Anglister J (1999) 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids. Biochemistry 38:15305–15316CrossRefPubMedGoogle Scholar
  35. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270CrossRefPubMedGoogle Scholar
  36. van den Bogaart G, Guzman JV, Mika JT, Poolman B (2008) On the mechanism of pore formation by melittin. J Biol Chem 283:33854–33857PubMedCentralCrossRefPubMedGoogle Scholar
  37. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRefGoogle Scholar
  38. Vogel H, Jahnig F (1986) The structure of melittin in membranes. Biophys J 50:573–582PubMedCentralCrossRefPubMedGoogle Scholar
  39. Wang Y, Zhao T, Wei D, Strandberg E, Ulrich AS, Ulmschneider JP (2014) How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim Biophys Acta Biomembr 1838:2280–2288CrossRefGoogle Scholar
  40. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485PubMedCentralCrossRefPubMedGoogle Scholar
  41. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55CrossRefPubMedGoogle Scholar
  42. Zhu L, Kemple MD, Yuan P, Prendergast FG (1995) N-terminus and lysine side chain pKa values of melittin in aqueous solutions and micellar dispersions measured by 15 N NMR. Biochemistry 34:13196–13202CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sanjay K. Upadhyay
    • 1
  • Yukun Wang
    • 2
  • Tangzhen Zhao
    • 1
  • Jakob P. Ulmschneider
    • 1
  1. 1.Institute of Natural Sciences and Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.The State Key Laboratory of Microbial Metabolism and College of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations