The Journal of Membrane Biology

, Volume 248, Issue 4, pp 611–640 | Cite as

Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

  • Zoe Cournia
  • Toby W. Allen
  • Ioan Andricioaei
  • Bruno Antonny
  • Daniel Baum
  • Grace Brannigan
  • Nicolae-Viorel Buchete
  • Jason T. Deckman
  • Lucie Delemotte
  • Coral del Val
  • Ran Friedman
  • Paraskevi Gkeka
  • Hans-Christian Hege
  • Jérôme Hénin
  • Marina A. Kasimova
  • Antonios Kolocouris
  • Michael L. Klein
  • Syma Khalid
  • M. Joanne Lemieux
  • Norbert Lindow
  • Mahua Roy
  • Jana Selent
  • Mounir Tarek
  • Florentina Tofoleanu
  • Stefano Vanni
  • Sinisa Urban
  • David J. Wales
  • Jeremy C. Smith
  • Ana-Nicoleta Bondar
Topical Review


Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.


Membrane proteins Lipids Protein structure Protein function Protein dynamics Membrane-mediated interactions 



ZC, ANB, and JCS would like to acknowledge funding from Centre Européen de Calcul Atomique et Moléculaire (CECAM) to host the Workshop “Coupling between protein, water, and lipid dynamics in complex biological systems: Theory and Experiments” that took place in September 2013, Lausanne, Switzerland. JTD, IA, and MR used the computational resources of the Modeling Facility of the Department of Chemistry, University of California Irvine funded by NSF Grant CHE-0840513 for this work. A-NB was supported in part by the Marie Curie International Rein-tegration Award IRG-26920 and used computing time from the North-German Supercomputing Alliance, HLRN. TWA was supported by ARC DP120103548, NSF MCB1052477, DE Shaw Anton (PSCA00061P; NRBSC, through NIH RC2GM093307), VLSCI (VR0200), and NCI (dd7). BA and SV acknowledge the support by ERC advanced Grant No. 268888. ZC and PG would like to acknowledge Reference Framework (NSRF) 2011–2013, National Action “Cooperation,” under grant entitled “Magnetic Nanoparticles for targeted MRI therapy (NANOTHER),” with code “11ΣYΝ-1-1799.” The program is cofunded by the European Regional Development Fund and national resources. Part of the calculations presented herein were performed using resources of the LinkSCEEM-2 project, funded by the EC under FP7 through Capacities Research Infrastructure, INFRA-2010-1.2.3 Virtual Research Communities, Combination of Collaborative Project and Coordination and Support Actions (CP-CSA) under Grant agreement no. RI-261600. GB was supported in part by NSF grant MCB1330728 from the National Science Foundation and Grant PO1GM55876-14A1 from the National Institutes of Health. LD received funding from EU FP7 (PIOF-GA-2012-329534). LD, and MLK used the computational resources of Temple University, supported by the National Science Foundation through major research instrumentation grant number CNS-09-58854. FT and NVB are grateful for financial support from the Irish Research Council, and for using the computational facilities of the Biowulf Linux cluster at the National Institutes of Health, USA and the Irish Centre for High-End Computing (ICHEC). JS acknowledges support from the Instituto de Salud Carlos III FEDER (CP12/03139) and the GLISTEN European Research Network.


  1. Abderemane-Ali F, Es-Salah-Lamoureux Z, Delemotte L, Kasimova MA, Labro AJ, Snyders DJ, Fedida D, Tarek M, Baro I, Loussouarn G (2012) Dual effect of phosphatidylinositol (4,5)-bisphosphate PIP(2) on Shaker K+ [corrected] channels. J Biol Chem 287:36158–36167PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aksimentiev A (2010) Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale 2:468–483PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aksimentiev A, Schulten K (2005) Imaging alpha-Hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761PubMedCentralPubMedCrossRefGoogle Scholar
  4. Allen TW, Andersen OS, Roux B (2004) On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J Gen Physiol 124:679–690PubMedCentralPubMedCrossRefGoogle Scholar
  5. Andersen OS (2011) Perspectives on: ion selectivity. J Gen Physiol 137:393–395PubMedCentralPubMedCrossRefGoogle Scholar
  6. Arias HR, Sankaram MB, Marsh D, Barrantes FJ (1990) Effect of local anaesthetics on steroid-nicotinic acetylcholine receptor interactions in native membranes of Torpedo marmorata electric organ. Biochim Biophys Acta 1027:287–294PubMedCrossRefGoogle Scholar
  7. Arutyunova E, Panwar P, Skiba PM, Gale N, Mak MW, Lemieux MJ (2014) Allosteric regulation of rhomboid intramembrane proteolysis. EMBO J 33:1869–1881PubMedCentralPubMedCrossRefGoogle Scholar
  8. Asandei A, Apetrei A, Park Y, Hahm K-S, Luchian T (2011) Investigation of single-molecule kinetics mediated by weak hydrogen bonds within a biological nanopore. Langmuir 27:19–24PubMedCrossRefGoogle Scholar
  9. Baez-Pagan CA, Martinez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velazquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA (2008) Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor’s activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels 2:180–190PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI, Swain NA (2013) Ion channels as therapeutic targets: a drug discovery perspective. J Med Chem 56:593–624PubMedCrossRefGoogle Scholar
  11. Baggett AW, Cournia Z, Han MS, Patargias G, Glass AC, Liu SY, Nolen BJ (2012) Structural characterization and computer-aided optimization of a small-molecule inhibitor of the Arp2/3 complex, a key regulator of the actin cytoskeleton. Chem Med Chem 7:1286–1294PubMedCentralPubMedCrossRefGoogle Scholar
  12. Baiesi M, Seno F, Trovato A (2011) Fibril elongation mechanisms of HET-s prion-forming domain: topological evidence for growth polarity. Proteins 79:3067–3081PubMedCrossRefGoogle Scholar
  13. Baker RP, Urban S (2012) Architectural and thermodynamic principles underlying intramembrane protease function. Nat Chem Biol 8:759–768PubMedCentralPubMedCrossRefGoogle Scholar
  14. Baker RP, Young K, Feng L, Shi Y, Urban S (2007) Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc Natl Acad Sci USA 104:8257–8262PubMedCentralPubMedCrossRefGoogle Scholar
  15. Baldwin AJ, Bader R, Christodoulou J, MacPhee CE, Dobson CM, Barker PD (2006) Cytochrome display on amyloid fibrils. J Am Chem Soc 128:2162–2163PubMedCrossRefGoogle Scholar
  16. Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner R, Harlan J, Barlow E, Ebert U, Hillen H (2005) Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95:834–847PubMedCrossRefGoogle Scholar
  17. Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev 47:71–95PubMedCrossRefGoogle Scholar
  18. Barrantes FJ (2007) Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 103(Suppl 1):72–80PubMedCrossRefGoogle Scholar
  19. Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275:37333–37339PubMedCrossRefGoogle Scholar
  20. Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575PubMedCrossRefGoogle Scholar
  21. Ben-Shem A, Fass D, Bibi E (2007) Structural basis for intramembrane proteolysis by rhomboid serine proteases. Proc Natl Acad Sci USA 104:462–466PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bezanilla F, Armstrong CM (1972) Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol 60:588–608PubMedCentralPubMedCrossRefGoogle Scholar
  23. Bigay J, Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23:886–895PubMedCrossRefGoogle Scholar
  24. Bogdan TV, Wales DJ, Calvo F (2006) Equilibrium thermodynamics from basin-sampling. J Chem Phys 124:044102PubMedCrossRefGoogle Scholar
  25. Boiteux C, Vorobyov I, Allen TW (2014a) Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA 111:3454–3459PubMedCentralPubMedCrossRefGoogle Scholar
  26. Boiteux C, Vorobyov I, French RJ, French C, Yarov-Yarovoy V, Allen TW (2014b) Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA 111:13057–13062PubMedCentralPubMedCrossRefGoogle Scholar
  27. Bond PJ, Derrick JP, Sansom MS (2007) Membrane simulations of OpcA: gating in the loops? Biophys J 92:L23–L25PubMedCentralPubMedCrossRefGoogle Scholar
  28. Bondar AN, White SH (2012) Hydrogen bond dynamics in membrane protein function. Biochim Biophys Acta 1818:942–950PubMedCentralPubMedCrossRefGoogle Scholar
  29. Bondar AN, del Val C, White SH (2009) Rhomboid protease dynamics and lipid interactions. Structure 17:395–405PubMedCentralPubMedCrossRefGoogle Scholar
  30. Bondar AN, del Val C, Freites JA, Tobias DJ, White SH (2010) Dynamics of secY translocons with translocation-defective mutations. Structure 18:847–857PubMedCentralPubMedCrossRefGoogle Scholar
  31. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ (2007) Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24:1–15PubMedCrossRefGoogle Scholar
  32. Brannigan G, Hénin J, Law R, Eckenhoff R, Klein ML (2008) Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 105:14418–14423PubMedCentralPubMedCrossRefGoogle Scholar
  33. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281PubMedCrossRefGoogle Scholar
  34. Bristow DR, Martin IL (1987) Solubilisation of the gamma-aminobutyric acid/benzodiazepine receptor from rat cerebellum: optimal preservation of the modulatory responses by natural brain lipids. J Neurochem 49:1386–1393PubMedCrossRefGoogle Scholar
  35. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441PubMedCentralPubMedCrossRefGoogle Scholar
  36. Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, Lemieux MJ (2011) Insights into substrate gating in H. influenzae rhomboid. J Mol Biol 407:687–697PubMedCrossRefGoogle Scholar
  37. Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180PubMedCrossRefGoogle Scholar
  38. Bruno A, Costantino G, de Fabritiis G, Pastor M, Selent J (2012) Membrane-sensitive conformational states of helix 8 in the metabotropic Glu2 receptor, a class C GPCR. PLoS ONE 7:e42023PubMedCentralPubMedCrossRefGoogle Scholar
  39. Buchete NV, Hummer G (2007) Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer’s a beta fibrils. Biophys J 92:3032–3039PubMedCentralPubMedCrossRefGoogle Scholar
  40. Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57:1577–1592PubMedCrossRefGoogle Scholar
  41. Butler T, Gundlach J, Troll M (2006) Determination of RNA orientation during translocation through a biological nanopore. Biophys J 90:190–199PubMedCentralPubMedCrossRefGoogle Scholar
  42. Butler T, Gundlach J, Troll M (2007) Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore. Biophys J 93:3229–3240PubMedCentralPubMedCrossRefGoogle Scholar
  43. Cady SD, Hong M (2008) Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proc Natl Acad Sci USA 105:1483–1488PubMedCentralPubMedCrossRefGoogle Scholar
  44. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692PubMedCentralPubMedCrossRefGoogle Scholar
  45. Cady SD, Wang J, Wu Y, DeGrado WF, Hong M (2011) Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy. J Am Chem Soc 133:4274–4284PubMedCentralPubMedCrossRefGoogle Scholar
  46. Caflisch A (2006) Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol 10:437–444PubMedCrossRefGoogle Scholar
  47. Chakrabarti D, Wales DJ (2009) Simulations of rigid bodies in an angle-axis framework. Phys Chem Chem Phys 11:1970–1976PubMedCrossRefGoogle Scholar
  48. Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomes R (2013) Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc Natl Acad Sci USA 110:11331–11336PubMedCentralPubMedCrossRefGoogle Scholar
  49. Chen L, Durr KL, Gouaux E (2014) X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. Science 345:1021–1026PubMedCentralPubMedCrossRefGoogle Scholar
  50. Chuang G-Y, Kozakov D, Brenke R, Beglov D, Guarnieri F, Vajda S (2009) Binding hot spots and amantadine orientation in the influenza A virus M2 proton channel. Biophys J 97:2846–2853PubMedCentralPubMedCrossRefGoogle Scholar
  51. Clare JJ (2010) Targeting ion channels for drug discovery. Discov Med 9:253–260PubMedGoogle Scholar
  52. Combs DJ, Shin HG, Xu Y, Ramu Y, Lu Z (2013) Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase. J Gen Physiol 142:367–380PubMedCentralPubMedCrossRefGoogle Scholar
  53. Conway K, Lee S, Rochet J, Ding T, Williamson R, Lansbury P (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576PubMedCentralPubMedCrossRefGoogle Scholar
  54. Criado M, Eibl H, Barrantes FJ (1984) Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem 259:9188–9198PubMedGoogle Scholar
  55. Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K+ channels. Nature 466:203–208PubMedCentralPubMedCrossRefGoogle Scholar
  56. Dalziel AW, Rollins ES, McNamee MG (1980) The effect of cholesterol on agonist-induced flux in reconstituted acetylcholine receptor vesicles. FEBS Lett 122:193–196PubMedCrossRefGoogle Scholar
  57. Danielsson J, Jarvet J, Damberg P, Graslund A (2005) The Alzheimer beta-peptide shows temperature-dependent transitions between left-handed 3-helix, beta-strand and random coil secondary structures. FEBS J 272:3938–3949PubMedCrossRefGoogle Scholar
  58. Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer JM, Meinke PT, McKernan RM (2000) Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid (A) receptor. J Pharmacol Exp Ther 295:1051–1060PubMedGoogle Scholar
  59. de Souza VK, Wales DJ (2008) Energy landscapes for diffusion: analysis of cage-breaking processes. J Chem Phys 129:164507PubMedCrossRefGoogle Scholar
  60. Dekker C (2013) Solid-state nanopores. Nat Nano 2:209–215CrossRefGoogle Scholar
  61. Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN (2014) Channelrhodopsins: a bioinformatics perspective, Biochim Biophys Acta, 2013 Elsevier B.V, Netherlands, pp 643–655Google Scholar
  62. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543PubMedCrossRefGoogle Scholar
  63. Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA 108:6109–6114PubMedCentralPubMedCrossRefGoogle Scholar
  64. Delemotte L, Klein ML, Tarek M (2012) Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 3:97PubMedCentralPubMedCrossRefGoogle Scholar
  65. Derreumaux P (2013) Coarse-grained models for protein folding and aggregation. Methods Mol Biol 924:585–600PubMedCrossRefGoogle Scholar
  66. Dickey SW, Baker RP, Cho S, Urban S (2013) Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 155:1270–1281PubMedCentralPubMedCrossRefGoogle Scholar
  67. Dijksman JA, Wortel GH, van Dellen LTH, Dauchot O, van Hecke M (2011) Jamming, yielding, and rheology of weakly vibrated granular media. Phys Rev Lett 107:108303–108307PubMedCrossRefGoogle Scholar
  68. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77PubMedCrossRefGoogle Scholar
  69. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667PubMedCrossRefGoogle Scholar
  70. du Plessis DJ, Berrelkamp G, Nouwen N, Driessen AJ (2009) The lateral gate of SecYEG opens during protein translocation. J Biol Chem 284:15805–15814PubMedCentralPubMedCrossRefGoogle Scholar
  71. Dunn SM, Martin CR, Agey MW, Miyazaki R (1989) Functional reconstitution of the bovine brain GABAA receptor from solubilized components. Biochemistry 28:2545–2551PubMedCrossRefGoogle Scholar
  72. Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187PubMedCentralPubMedCrossRefGoogle Scholar
  73. Ellena JF, Blazing MA, McNamee MG (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22:5523–5535PubMedCrossRefGoogle Scholar
  74. Engel M (2009) Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids 160:1–10PubMedCrossRefGoogle Scholar
  75. Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD (2007) Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J Am Chem Soc 129:15480–15490PubMedCrossRefGoogle Scholar
  76. Evans DA, Wales DJ (2003) The free energy landscape and dynamics of met-enkephalin. J Chem Phys 119:9947–9955CrossRefGoogle Scholar
  77. Falk M, Krone M, Ertl T (2013) Atomistic visualization of mesoscopic whole-cell simulations using ray-casted instancing. Comput Graph Forum 32:195–206Google Scholar
  78. Fejer SN, Wales DJ (2007) Helix self-assembly from anisotropic molecules. Phys Rev Lett 99:086106PubMedCrossRefGoogle Scholar
  79. Feller SE, Gawrisch K, Woolf TB (2003) Rhodopsin exhibits a preference for solvation by polyunsaturated docosohexaenoic acid. J Am Chem Soc 125:4434–4435PubMedCrossRefGoogle Scholar
  80. Forman CJ, Nickson AA, Anthony-Cahill SJ, Baldwin AJ, Kaggwa G, Feber U, Sheikh K, Jarvis SP, Barker PD (2012) The morphology of decorated amyloid fibers is controlled by the conformation and position of the displayed protein. ACS Nano 6:1332–1346PubMedCrossRefGoogle Scholar
  81. Forman CJ, Fejer SN, Chakrabarti D, Barker PD, Wales DJ (2013) Local frustration determines molecular and macroscopic helix structures. J Phys Chem B 117:7918–7928PubMedCrossRefGoogle Scholar
  82. Freedman KJ, Haq SR, Edel JB, Jemth P, Kim MJ (2013) Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci Rep 3:1638PubMedCentralPubMedGoogle Scholar
  83. Friedman R (2011) Aggregation of amyloids in a cellular context: modelling and experiment. Biochem J 438:415–426PubMedCrossRefGoogle Scholar
  84. Friedman R, Caflisch A (2011) Surfactant effects on amyloid aggregation kinetics. J Mol Biol 414:303–312PubMedCrossRefGoogle Scholar
  85. Friedman R, Caflisch A (2014) Wild type and mutants of the HET-s(218–289) prion show different flexibility at fibrillar ends: a simulation study. Proteins 82:399–404PubMedCrossRefGoogle Scholar
  86. Friedman R, Pellarin R, Caflisch A (2009) Amyloid aggregation on lipid bilayers and its impact on membrane permeability. J Mol Biol 387:407–415PubMedCrossRefGoogle Scholar
  87. Friedman R, Pellarin R, Caflisch A (2010) Soluble protofibrils as metastable intermediates in simulations of amyloid fibril degradation induced by lipid vesicles. J Phys Chem Lett 1:471–474CrossRefGoogle Scholar
  88. Gkeka P, Eleftheratos S, Kolocouris A, Cournia Z (2013) Free energy calculations reveal the origin of binding preference for aminoadamantane blockers of influenza A/M2TM Pore. J Chem Theory Comput 9:1272–1281CrossRefPubMedGoogle Scholar
  89. Goddard AD, Dijkman PM, Adamson RJ, Watts A (2013). Lipid-dependent GPCR dimerization. Methods Cell Biol, copyright 2013 Elsevier Inc, United States, pp 341–57Google Scholar
  90. Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604PubMedCentralPubMedCrossRefGoogle Scholar
  91. Gonzalez A, Murcia M, Benhamu B, Campillo M, Lopez-Rodriguez ML, Pardo L (2011) The importance of solvation in the design of ligands targeting membrane proteins. Medchemcomm 2:160–164CrossRefGoogle Scholar
  92. Goose JE, Sansom MS (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 9:e1003033PubMedCentralPubMedCrossRefGoogle Scholar
  93. Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci USA 103:4888–4893PubMedCentralPubMedCrossRefGoogle Scholar
  94. Gu R-X, Liu LA, Wei D-Q, Du J-G, Liu L, Liu H (2011) Free energy calculations on the two drug binding sites in the M2 proton channel. J Am Chem Soc 133:10817–10825PubMedCrossRefGoogle Scholar
  95. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498PubMedCentralPubMedCrossRefGoogle Scholar
  96. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905PubMedCentralPubMedCrossRefGoogle Scholar
  97. Hasegawa K, Tsutsumi-Yasuhara S, Ookoshi T, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H (2008) Growth of beta(2)-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral p H. Biochem J 416:307–315PubMedCrossRefGoogle Scholar
  98. Head D (2009) Critical scaling and aging in cooling systems near the jamming transition. Phys Rev Lett 102:138001PubMedCrossRefGoogle Scholar
  99. Hénin J, Salari R, Murlidaran S, Brannigan G (2014) A predicted binding site for cholesterol on the GABAA receptor. Biophys J 106:1938–1949PubMedCentralPubMedCrossRefGoogle Scholar
  100. Hessa T, White SH, von Heijne G (2005) Membrane insertion of a potassium-channel voltage sensor. Science 307:1427PubMedCrossRefGoogle Scholar
  101. Heussinger C, Barrat J-L (2009) Jamming transition as probed by quasistatic shear flow. Phys Rev Lett 102:218303PubMedCrossRefGoogle Scholar
  102. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60PubMedCentralPubMedCrossRefGoogle Scholar
  103. Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 1851(6):844–856PubMedCrossRefGoogle Scholar
  104. Holdbrook DA, Piggot TJ, Sansom MS, Khalid S (2013) Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. Biochim Biophys Acta 1828:715–723PubMedCrossRefGoogle Scholar
  105. Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489PubMedCrossRefGoogle Scholar
  106. Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19PubMedCrossRefGoogle Scholar
  107. Hung A, Yarovsky I (2011) Inhibition of peptide aggregation by lipids: insights from coarse-grained molecular simulations. J Mol Graph Model 29:597–607PubMedCrossRefGoogle Scholar
  108. Janson J, Soeller W, Roche P, Nelson R, Torchia A, Kreutter D, Butler P (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288PubMedCentralPubMedCrossRefGoogle Scholar
  109. Jardon-Valadez E, Bondar AN, Tobias DJ (2010) Coupling of retinal, protein, and water dynamics in squid rhodopsin. Biophys J 99:2200–2207PubMedCentralPubMedCrossRefGoogle Scholar
  110. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233PubMedCrossRefGoogle Scholar
  111. Jose PP, Andricioaei I (2012) Similarities between protein folding and granular jamming. Nat Commun 3:1161PubMedCentralPubMedCrossRefGoogle Scholar
  112. Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 280:36815–36823PubMedCrossRefGoogle Scholar
  113. Kantor Y, Kardar M (2004) Anomalous dynamics of forced translocation. Phys Rev E 69:021806–021818CrossRefGoogle Scholar
  114. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:992–997PubMedCentralPubMedCrossRefGoogle Scholar
  115. Kasimova MA, Tarek M, Shaytan AK, Shaitan KV, Delemotte L (2014) Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations. Biochim Biophys Acta, 2014 Elsevier B.V, Netherlands, pp 1322–31Google Scholar
  116. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374PubMedCentralPubMedCrossRefGoogle Scholar
  117. Khalid S, Bond PJ, Deol SS, Sansom MS (2006) Modeling and simulations of a bacterial outer membrane protein: OprF from pseudomonas aeruginosa. Proteins 63:6–15PubMedCrossRefGoogle Scholar
  118. Khemtemourian L, Lahoz Casarramona G, Suylen D, Hackeng T, Meeldijk J, de Kruijff B, Hoeppener J, Killian J (2009) Impaired processing of human Pro-Islet Amyloid Polypeptide is not a causative factor for fibril formation or membrane damage in vitro. Biochemistry 48:10918–10925PubMedCrossRefGoogle Scholar
  119. Kilian PL, Dunlap CR, Mueller P, Schell MA, Huganir RL, Racker E (1980) Reconstitution of acetylcholine receptor from Torpedo Californica with highly purified phospholipids: effect of alpha-tocopherol, phylloquinone, and other terpenoid quinones. Biochem Biophys Res Commun 93:409–414PubMedCrossRefGoogle Scholar
  120. Kim I, Allen TW (2011) On the selective ion binding hypothesis for potassium channels. Proc Natl Acad Sci USA 108:17963–17968PubMedCentralPubMedCrossRefGoogle Scholar
  121. Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Rodrigues CG, Bhakdi S, Valeva A (2000) Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Mol Microbiol 37:1372–1378PubMedCrossRefGoogle Scholar
  122. Krone M, Reina G, Schulz C, Kulschewski T, Pleiss J, Ertl T (2013) Interactive extraction and tracking of biomolecular surface features. Comput Graph Forum 32:331–340CrossRefGoogle Scholar
  123. Krone M, Kauker D, Reina G, Ertl T (2014) Visual analysis of dynamic protein cavities and binding sites. Pac Visualization Symp PacVis IEEE 301–305Google Scholar
  124. Kruse M, Hammond GR, Hille B (2012) Regulation of voltage-gated potassium channels by PI(4,5)P2. J Gen Physiol 140:189–205PubMedCentralPubMedCrossRefGoogle Scholar
  125. Krusek J, Zemkova H (1994) Effect of ivermectin on gamma-aminobutyric acid-induced chloride currents in mouse hippocampal embryonic neurones. Eur J Pharmacol 259:121–128PubMedCrossRefGoogle Scholar
  126. Kumar S, Rosenberg J, Bouzida D, RH S, Kollman P (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method (pages 1011–1021). J Comput Chem 13:1011–1021CrossRefGoogle Scholar
  127. Lamb ML, Jorgensen WL (1997) Computational approaches to molecular recognition. Curr Opin Chem Biol 1:449–457PubMedCrossRefGoogle Scholar
  128. Lambert M, Barlow A, Chromy B, Edwards C, Freed R, Liosatos M, Morgan T, Rozovsky I, Trommer B, Viola K, Wals P, Zhang C, Finch C, Krafft G, Klein W (1998) Diffusible, nonfibrillar ligands derived from A beta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCentralPubMedCrossRefGoogle Scholar
  129. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1):47–60PubMedCrossRefGoogle Scholar
  130. Lazareno-Saez C, Arutyunova E, Coquelle N, Lemieux MJ (2013) Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. J Mol Biol 425:1127–1142PubMedCrossRefGoogle Scholar
  131. Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192PubMedCrossRefGoogle Scholar
  132. Lechleiter J, Wells M, Gruener R (1986) Halothane-induced changes in acetylcholine receptor channel kinetics are attenuated by cholesterol. Biochim Biophys Acta 856:640–645PubMedCrossRefGoogle Scholar
  133. Lee JY, Lyman E (2012) Predictions for cholesterol interaction sites on the A2A adenosine receptor. J Am Chem Soc 134:16512–16515PubMedCrossRefGoogle Scholar
  134. Leibel WS, Firestone LL, Legler DC, Braswell LM, Miller KW (1987) Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo. Biochim Biophys Acta 897:249–260PubMedCrossRefGoogle Scholar
  135. Lemieux MJ, Fischer SJ, Cherney MM, Bateman KS, James MN (2007) The crystal structure of the rhomboid peptidase from haemophilus influenzae provides insight into intramembrane proteolysis. Proc Natl Acad Sci USA 104:750–754PubMedCentralPubMedCrossRefGoogle Scholar
  136. Lemkul J, Bevan D (2012) The role of molecular simulations in the development of inhibitors of amyloid beta-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci 3:845–856PubMedCentralPubMedCrossRefGoogle Scholar
  137. Lenaeus MJ, Burdette D, Wagner T, Focia PJ, Gross A (2014) Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Biochemistry 53:5365–5373PubMedCentralPubMedCrossRefGoogle Scholar
  138. Liguori N, Nerenberg P, Head-Gordon T (2013) Embedding Abeta42 in heterogeneous membranes depends on cholesterol asymmetries. Biophys J 105:899–910PubMedCentralPubMedCrossRefGoogle Scholar
  139. Lindow N, Baum D, Hege H-C (2011) Voronoi-based extraction and visualization of molecular paths. IEEE Trans Vis Comput Graph 17:2025–2034PubMedCrossRefGoogle Scholar
  140. Lindow N, Baum D, Bondar A, Hege HC (2012a). Dynamic channels in biomolecular systems: path analysis and visualization, Biological Data Visualization (BioVis), 2012 IEEE Symposium on, IEEE, 99–106Google Scholar
  141. Lindow N, Baum D, Hege H-C (2012b) Interactive rendering of material and biological structures on atomic and nanoscopic scale. Comput Graph Forum 31:1045–1054CrossRefGoogle Scholar
  142. Lindow N, Baum D, Bondar AN, Hege HC (2013) Exploring cavity dynamics in biomolecular systems. BMC Bioinform 14(Suppl 19):S5CrossRefGoogle Scholar
  143. Lins RD, Straatsma TP (2001) Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. Biophys J 81:1037–1046PubMedCentralPubMedCrossRefGoogle Scholar
  144. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ap IJ, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236PubMedCentralPubMedCrossRefGoogle Scholar
  145. Logothetis DE, Petrou VI, Adney SK, Mahajan R (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460:321–341PubMedCentralPubMedCrossRefGoogle Scholar
  146. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903PubMedCrossRefGoogle Scholar
  147. Marrink S, Risselada H, Yefimov S, Tieleman D, de Vries A (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824PubMedCrossRefGoogle Scholar
  148. Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci USA 75:4329–4333PubMedCentralPubMedCrossRefGoogle Scholar
  149. Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim Biophys Acta 645:97–101PubMedCrossRefGoogle Scholar
  150. Martins I, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert A beta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233PubMedCentralPubMedCrossRefGoogle Scholar
  151. Mereuta L, Schiopu I, Asandei A, Park Y, Hahm K-S, Luchian T (2012) Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, Histidine-containing chimera peptide. Langmuir 28:17079–17091PubMedCrossRefGoogle Scholar
  152. Mereuta L, Roy M, Asandei A, Lee JK, Park Y, Andricioaei I, Luchian T (2014) Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci Rep 4:3885PubMedCentralPubMedCrossRefGoogle Scholar
  153. Michel J, Foloppe N, Essex JW (2010) Rigorous free energy calculations in structure-based drug design. Mol Inform 29:570–578CrossRefGoogle Scholar
  154. Middlemas DS, Raftery MA (1987) Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry 26:1219–1223PubMedCrossRefGoogle Scholar
  155. Mitchell DC, Niu SL, Litman BJ (2001) Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding. J Biol Chem 276(46):42801–42806PubMedGoogle Scholar
  156. Mohammad M, Movileanu L (2008) Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. Eur Biophys J 37:913–925PubMedCrossRefGoogle Scholar
  157. Moiset G, Lopez CA, Bartelds R, Syga L, Rijpkema E, Cukkemane A, Baldus M, Poolman B, Marrink SJ (2014) Disaccharides impact the lateral organization of lipid membranes. J Am Chem Soc 136:16167–16175PubMedCrossRefGoogle Scholar
  158. Mondal S, Khelashvili G, Shan J, Andersen OS, Weinstein H (2011) Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. Biophys J 101:2092–2101PubMedCentralPubMedCrossRefGoogle Scholar
  159. Moritsugu K, Smith JC (2007) Coarse-grained biomolecular simulation with REACH: realistic extension algorithm via covariance Hessian. Biophys J 93:3460–3469PubMedCentralPubMedCrossRefGoogle Scholar
  160. Mortenson PN, Evans DA, Wales DJ (2002) Energy landscapes of model polyalanines. J Chem Phys 117:1363–1376CrossRefGoogle Scholar
  161. Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095PubMedCrossRefGoogle Scholar
  162. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105:1902–1921CrossRefGoogle Scholar
  163. Neyton J, Miller C (1988) Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J Gen Physiol 92:569–586PubMedCrossRefGoogle Scholar
  164. Nimigean CM, Allen TW (2011) Origins of ion selectivity in potassium channels from the perspective of channel block. J Gen Physiol 137:405–413PubMedCentralPubMedCrossRefGoogle Scholar
  165. Niu SL, Mitchell DC, Litman BJ (2001) Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex. J Biol Chem 276(46):42807–42811Google Scholar
  166. Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834PubMedCrossRefGoogle Scholar
  167. Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807PubMedCrossRefGoogle Scholar
  168. Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A (2012). The role of cholesterol on the activity and stability of neurotensin receptor 1, Biochim Biophys Acta, 2012 Elsevier B.V, Netherlands, 2228–33Google Scholar
  169. Ochoa EL, Dalziel AW, McNamee MG (1983) Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. Biochim Biophys Acta 727:151–162PubMedCrossRefGoogle Scholar
  170. Olsson P, Teitel S (2007) Critical scaling of shear viscosity at the jamming transition. Phys Rev Lett 99:178001PubMedCrossRefGoogle Scholar
  171. Oukhaled G, Mathe J, Biance AL, Bacri L, Betton JM, Lairez D, Pelta J, Auvray L (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys Rev Lett 98:158101PubMedCrossRefGoogle Scholar
  172. Palovcak E, Delemotte L, Klein ML, Carnevale V (2014) Evolutionary imprint of activation: the design principles of VSDs. J Gen Physiol 143:145–156PubMedCentralPubMedCrossRefGoogle Scholar
  173. Pastoriza-Gallego M, Rabah L, Gibrat G, Thiebot B, van der Goot F, Auvray L, Betton J-M, Pelta J (2011) Dynamics of unfolded protein transport through an aerolysin pore. J Am Chem Soc 133:2923–2931PubMedCrossRefGoogle Scholar
  174. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358PubMedCentralPubMedCrossRefGoogle Scholar
  175. Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–139PubMedCentralPubMedGoogle Scholar
  176. Payet L, Martinho M, Pastoriza-Gallego M, Betton J-M, Auvray L, Pelta J, Mathe J (2012) Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal Chem 84:4071–4076PubMedCrossRefGoogle Scholar
  177. Pellarin R, Caflisch A (2006) Interpreting the aggregation kinetics of amyloid peptides. J Mol Biol 360:882–892PubMedCrossRefGoogle Scholar
  178. Piggot TJ, Holdbrook DA, Khalid S (2011) Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B 115:13381–13388PubMedCrossRefGoogle Scholar
  179. Piggot T, Piñeiro A, Khalid S (2012) Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. J Chem Theory Comput 8:4593–4609CrossRefPubMedGoogle Scholar
  180. Piggot TJ, Holdbrook DA, Khalid S (2013) Conformational dynamics and membrane interactions of the E. coli outer membrane protein FecA: a molecular dynamics simulation study. Biochim Biophys Acta 1828:284–293PubMedCrossRefGoogle Scholar
  181. Pitman MC, Grossfield A, Suits F, Feller SE (2005) Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc 127:4576–4577PubMedCrossRefGoogle Scholar
  182. Plath K, Wilkinson BM, Stirling CJ, Rapoport TA (2004) Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum. Mol Biol Cell 15:1–10PubMedCentralPubMedCrossRefGoogle Scholar
  183. Popot JL, Demel RA, Sobel A, Van Deenen LL, Changeux JP (1978) Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur J Biochem 85:27–42PubMedCrossRefGoogle Scholar
  184. Ramu Y, Xu Y, Lu Z (2006) Enzymatic activation of voltage-gated potassium channels. Nature 442:696–699PubMedCrossRefGoogle Scholar
  185. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669PubMedCrossRefGoogle Scholar
  186. Reddy MR, Erion MD (2001) Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc 123:6246–6252PubMedCrossRefGoogle Scholar
  187. Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8:329–351PubMedCrossRefGoogle Scholar
  188. Reis P, Ingale R, Shattuck M (2007) Forcing independent velocity distributions in an experimental granular fluid. Phys Rev E 75:051311–051325CrossRefGoogle Scholar
  189. Rheingans P, Joshi S (1999) Visualization of molecules with positional uncertainty, Data Visualization’99, Springer, pp 299–306Google Scholar
  190. Robertson KM, Tieleman DP (2002) Molecular basis of voltage gating of OmpF porin. Biochem Cell Biol 80:517–523PubMedCrossRefGoogle Scholar
  191. Rodriguez-Menchaca AA, Adney SK, Tang QY, Meng XY, Rosenhouse-Dantsker A, Cui M, Logothetis DE (2012) PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4–S5 linker. Proc Natl Acad Sci USA 109:E2399–E2408PubMedCentralPubMedCrossRefGoogle Scholar
  192. Rosenberg MR, Casarotto MG (2010) Coexistence of two adamantane binding sites in the influenza A M2 ion channel. Proc Natl Acad Sci USA 107:13866–13871PubMedCentralPubMedCrossRefGoogle Scholar
  193. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282CrossRefGoogle Scholar
  194. Roux B (1997) Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2980–2989PubMedCentralPubMedCrossRefGoogle Scholar
  195. Sadiq SK, Guixa-Gonzalez R, Dainese E, Pastor M, De Fabritiis G, Selent J (2013) Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs. Curr Med Chem 20:22–38PubMedCrossRefGoogle Scholar
  196. Sampathkumar P, Mak MW, Fischer-Witholt SJ, Guigard E, Kay CM, Lemieux MJ (2012) Oligomeric state study of prokaryotic rhomboid proteases. Biochim Biophys Acta 1818:3090–3097PubMedCrossRefGoogle Scholar
  197. Sands ZA, Sansom MS (2007) How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain. Structure 15:235–244PubMedCentralPubMedCrossRefGoogle Scholar
  198. Santiago J, Guzman GR, Rojas LV, Marti R, Asmar-Rovira GA, Santana LF, McNamee M, Lasalde-Dominicci JA (2001) Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation alpha C418 W in Xenopus oocytes. J Biol Chem 276:46523–46532PubMedCrossRefGoogle Scholar
  199. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–779PubMedCrossRefGoogle Scholar
  200. Schmidt-Ehrenberg J (2008) Analysis and visualization of molecular conformations. Freie Universität Berlin, BerlinGoogle Scholar
  201. Schmidt-Ehrenberg J, Baum D, Hege H-C (2002). Visualizing dynamic molecular conformations. Proc. IEEE visualization, pp 235–242Google Scholar
  202. Schütte C, Sarich M (2013). Metastability and Markov state models in molecular dynamics: modeling, analysis, algorithmic approaches, vol 24. American Mathematical SocietyGoogle Scholar
  203. Seo M, Rauscher S, Poms R, Tieleman D (2012) Improving internal peptide dynamics in the coarse-grained MARTINI model: toward large-scale simulations of amyloid- and elastin-like peptides. J Chem Theory Comput 8:1774–1785PubMedCentralPubMedCrossRefGoogle Scholar
  204. Shea J, Urbanc B (2012) Insights into Aβ aggregation: a molecular dynamics perspective. Curr Top Med Chem 12:2596–2610PubMedCrossRefGoogle Scholar
  205. Silbert L (2010) Jamming of frictional spheres and random loose packing. Soft Matter 6:2918–2924CrossRefGoogle Scholar
  206. Snoeijer JH, Vlugt TJH, Ellenbroek WG, van Hecke M, van Leeuwen JMJ (2004) Ensemble theory for force networks in hyperstatic granular matter. Phys Rev E 70:061306–061322CrossRefGoogle Scholar
  207. Song L, Hobaugh M, Shustak C, Cheley S, Bayley H, Gouaux J (1996) Structure of Staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274:1859–1865PubMedCrossRefGoogle Scholar
  208. Sooksawate T, Simmonds MA (1998) Increased membrane cholesterol reduces the potentiation of GABA(A) currents by neurosteroids in dissociated hippocampal neurones. Neuropharmacology 37:1103–1110PubMedCrossRefGoogle Scholar
  209. Sooksawate T, Simmonds MA (2001a) Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40:178–184PubMedCrossRefGoogle Scholar
  210. Sooksawate T, Simmonds MA (2001b) Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators. Br J Pharmacol 134:1303–1311PubMedCentralPubMedCrossRefGoogle Scholar
  211. Stefureac R, Waldner L, Howard PJL (2008) Nanopore analysis of a small 86-residue protein. Small 4:59–63PubMedCrossRefGoogle Scholar
  212. Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599PubMedCrossRefGoogle Scholar
  213. Straatsma TP, Soares TA (2009) Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation. Proteins 74:475–488PubMedCentralPubMedCrossRefGoogle Scholar
  214. Strodel B, Whittleston CS, Wales DJ (2007) Thermodynamics and kinetics of aggregation for the GNNQQNY peptide. J Am Chem Soc 129:16005–16014PubMedCrossRefGoogle Scholar
  215. Strodel B, Lee JW, Whittleston CS, Wales DJ (2010) Transmembrane structures for Alzheimer’s Abeta(1–42) oligomers. J Am Chem Soc 132:13300–13312PubMedCrossRefGoogle Scholar
  216. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195PubMedCentralPubMedCrossRefGoogle Scholar
  217. Tarek M, Delemotte L (2013) Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations? Acc Chem Res 46:2755–2762PubMedCrossRefGoogle Scholar
  218. Tautermann CS (2014). GPCR structures in drug design, emerging opportunities with new structures, Bioorg Med Chem Lett, 2014 The Author. Published by Elsevier Ltd., England, pp 4073–4079Google Scholar
  219. Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, Nimigean CM (2009) Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nat Struct Mol Biol 16:1317–1324PubMedCentralPubMedCrossRefGoogle Scholar
  220. Tian P, Andricioaei I (2005) Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore. J Mol Biol 350:1017–1034PubMedCrossRefGoogle Scholar
  221. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10PubMedCentralPubMedCrossRefGoogle Scholar
  222. Tighe B, Socolar J, Schaeffer D, Mitchener W, Huber M (2005) Force distributions in a triangular lattice of rigid bars. Phys Rev E 72:031306–031316CrossRefGoogle Scholar
  223. Tighe B, Snoeijer J, Vlugt T, van Hecke M (2010) The force network ensemble for granular packings. Soft Matter 6:2908–2917CrossRefGoogle Scholar
  224. Tofoleanu F, Buchete NV (2012a) Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Prion 6:339–345PubMedCentralPubMedCrossRefGoogle Scholar
  225. Tofoleanu F, Buchete NV (2012b) Molecular interactions of Alzheimer’s Aβ protofilaments with lipid membranes. J Mol Biol 421:572–586PubMedCrossRefGoogle Scholar
  226. Tofoleanu F, Brooks BR, Buchete NV (2015) Modulation of Alzheimer’s abeta protofilament-membrane interactions by lipid headgroups. ACS Chem Neurosci 6:446–455PubMedCrossRefGoogle Scholar
  227. Treptow W, Tarek M (2006) Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys J 90:L64–L66PubMedCentralPubMedCrossRefGoogle Scholar
  228. Treptow W, Tarek M, Klein ML (2009) Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 131:2107–2109PubMedCentralPubMedCrossRefGoogle Scholar
  229. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991PubMedCentralPubMedCrossRefGoogle Scholar
  230. Ulmschneider MB, Doux JP, Killian JA, Smith JC, Ulmschneider JP (2010) Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. J Am Chem Soc 132:3452–3460PubMedCrossRefGoogle Scholar
  231. Ulmschneider JP, Smith JC, White SH, Ulmschneider MB (2011) In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions. J Am Chem Soc 133:15487–15495PubMedCentralPubMedCrossRefGoogle Scholar
  232. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989PubMedCrossRefGoogle Scholar
  233. Urban S, Dickey SW (2011) The rhomboid protease family: a decade of progress on function and mechanism. Genome Biol 12:231PubMedCentralPubMedCrossRefGoogle Scholar
  234. Urban S, Wolfe M (2005) Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci USA 102:1883–1888PubMedCentralPubMedCrossRefGoogle Scholar
  235. Vagberg D, Valdez-Balderas D, Moore MA, Olsson P, Teitel S (2011) Finite-size scaling at the jamming transition: corrections to scaling and the correlation-length critical exponent. Phys Rev E 83:030303(R)CrossRefGoogle Scholar
  236. Vamparys L, Gautier R, Vanni S, Bennett WF, Tieleman DP, Antonny B, Etchebest C, Fuchs PF (2013) Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys J 104:585–593PubMedCentralPubMedCrossRefGoogle Scholar
  237. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44PubMedCrossRefGoogle Scholar
  238. Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C, Fuchs PF, Antonny B (2013) Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys J 104(3):575–584PubMedCentralPubMedCrossRefGoogle Scholar
  239. Vanni S, Hirose H, Barelli H, Antonny B, Gautier R (2014). A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment, Nat Commun Engl 4916Google Scholar
  240. Vestergaard MC, Morita M, Hamada T, Takagi M (2013) Membrane fusion and vesicular transformation induced by A lzheimer’s amyloid beta. Biochim Biophys Acta 1828:1314–1321PubMedCrossRefGoogle Scholar
  241. Vinothkumar KR (2011) Structure of rhomboid protease in a lipid environment. J Mol Biol 407:232–247PubMedCentralPubMedCrossRefGoogle Scholar
  242. Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M (2010) The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J 29:3797–3809PubMedCentralPubMedCrossRefGoogle Scholar
  243. Vivekanandan S, Brender JR, Lee SY, Ramamoorthy A (2011) A partially folded structure of amyloid-beta(1–40) in an aqueous environment. Biochem Biophys Res Commun 411:312–316PubMedCentralPubMedCrossRefGoogle Scholar
  244. Wales D (2002) Discrete path sampling. Mol Phys 100:3285–3305CrossRefGoogle Scholar
  245. Wales D (2003) Energy landscapes. Cambridge University Press, CambridgeGoogle Scholar
  246. Wales DJ (2005) The energy landscape as a unifying theme in molecular science. Philos Trans A Math Phys Eng Sci 363:357–375; discussion 375–7PubMedCrossRefGoogle Scholar
  247. Wales D (2006) Energy landscapes: calculating pathways and rates. Int Rev Phys Chem 25:237–282CrossRefGoogle Scholar
  248. Wales D (2010) Energy landscapes: some new horizons. Curr Opin Struct Biol 20:3–10PubMedCrossRefGoogle Scholar
  249. Wales D (2013) Surveying a complex potential energy landscape: overcoming broken ergodicity using basin-sampling. Chem Phys Lett 584:1–9CrossRefGoogle Scholar
  250. Wales DJ, Bogdan TV (2006) Potential energy and free energy landscapes. J Phys Chem B 110:20765–20776PubMedCrossRefGoogle Scholar
  251. Wales DJ, Dewsbury PE (2004) Effect of salt bridges on the energy landscape of a model protein. J Chem Phys 121:10284–10290PubMedCrossRefGoogle Scholar
  252. Wales D, Doye J (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters Containing up to 110 atoms. J Phys Chem A 101:5111–5116CrossRefGoogle Scholar
  253. Wales D, Doye J (2003) Stationary points and dynamics in high-dimensional systems. J Chem Phys 119:12409–12416CrossRefGoogle Scholar
  254. Wales D, Walsh T (1997) Theoretical Study of the water tetramer. J Chem Phys 106:7193–7207CrossRefGoogle Scholar
  255. Walsh DM, Selkoe DJ (2007). A beta oligomers—a decade of discovery, (ed)^(eds) J Neurochem, England, 1172-84Google Scholar
  256. Walsh T, Wales D (1996) Rearrangements of the water trimer. J Chem Soc Faraday T 92:2505–2517CrossRefGoogle Scholar
  257. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedCrossRefGoogle Scholar
  258. Wang Y, Ha Y (2007) Open-cap conformation of intramembrane protease GlpG. Proc Natl Acad Sci USA 104:2098–2102PubMedCentralPubMedCrossRefGoogle Scholar
  259. Wang JF, Kim S, Kovacs F, Cross TA (2001) Structure of the transmembrane region of the M2 protein H + channel. Protein Sci 10:2241–2250PubMedCentralPubMedCrossRefGoogle Scholar
  260. Wang Y, Zhang Y, Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444:179–180PubMedCrossRefGoogle Scholar
  261. Wang Y, Maegawa S, Akiyama Y, Ha Y (2007) The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J Mol Biol 374:1104–1113PubMedCentralPubMedCrossRefGoogle Scholar
  262. White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42PubMedCrossRefGoogle Scholar
  263. Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208PubMedCentralPubMedCrossRefGoogle Scholar
  264. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848PubMedCrossRefGoogle Scholar
  265. Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S, Shi Y (2006) Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol 13:1084–1091PubMedCrossRefGoogle Scholar
  266. Wu EL, Engstrom O, Jo S, Stuhlsatz D, Yeom MS, Klauda JB, Widmalm G, Im W (2013) Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys J 105:1444–1455PubMedCentralPubMedCrossRefGoogle Scholar
  267. Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB, Fleming KG, Im W (2014) E. coli outer membrane and interactions with OmpLA. Biophys J 106:2493–2502PubMedCentralPubMedCrossRefGoogle Scholar
  268. Xu Y, Ramu Y, Lu Z (2008) Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K + channels. Nature 451:826–829PubMedCentralPubMedCrossRefGoogle Scholar
  269. Xue Y, Ha Y (2012) Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J Biol Chem 287:3099–3107PubMedCentralPubMedCrossRefGoogle Scholar
  270. Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y (2012) Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S’ subsites. Biochemistry 51:3723–3731PubMedCentralPubMedCrossRefGoogle Scholar
  271. Zabrecky JR, Raftery MA (1985) The role of lipids in the function of the acetylcholine receptor. J Recept Res 5:397–417PubMedGoogle Scholar
  272. Zhao C, Caplan DA, Noskov SY (2010) Evaluations of the absolute and relative free energies for antidepressant binding to the amino acid membrane transporter LeuT with free energy simulations. J Chem Theory Comput 6:1900–1914CrossRefPubMedGoogle Scholar
  273. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943PubMedCrossRefGoogle Scholar
  274. Zwanzig R (1954) High-temperature equation of state by a perturbation method. Nonpolar gases. J Chem Phys 22:1420–1426CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zoe Cournia
    • 1
  • Toby W. Allen
    • 2
    • 3
  • Ioan Andricioaei
    • 4
  • Bruno Antonny
    • 5
  • Daniel Baum
    • 6
  • Grace Brannigan
    • 7
  • Nicolae-Viorel Buchete
    • 8
  • Jason T. Deckman
    • 4
  • Lucie Delemotte
    • 9
  • Coral del Val
    • 10
  • Ran Friedman
    • 11
  • Paraskevi Gkeka
    • 1
  • Hans-Christian Hege
    • 6
  • Jérôme Hénin
    • 12
  • Marina A. Kasimova
    • 13
    • 14
  • Antonios Kolocouris
    • 15
  • Michael L. Klein
    • 9
  • Syma Khalid
    • 16
  • M. Joanne Lemieux
    • 17
  • Norbert Lindow
    • 6
  • Mahua Roy
    • 4
  • Jana Selent
    • 18
  • Mounir Tarek
    • 13
    • 19
  • Florentina Tofoleanu
    • 8
  • Stefano Vanni
    • 5
  • Sinisa Urban
    • 20
  • David J. Wales
    • 21
  • Jeremy C. Smith
    • 22
  • Ana-Nicoleta Bondar
    • 23
  1. 1.Biomedical Research FoundationAcademy of AthensAthensGreece
  2. 2.Department of ChemistryUniversity of California, DavisDavisUSA
  3. 3.School of Applied Sciences and Health Innovations Research InstituteRMIT UniversityMelbourneAustralia
  4. 4.Department of ChemistryUniversity of CaliforniaIrvineUSA
  5. 5.Institut de Pharmacologie Moléculaire et CellulaireUniversité de Nice Sophia-Antipolis and Centre National de la Recherche ScientifiqueNiceFrance
  6. 6.Department of Visual Data AnalysisZuse Institute BerlinBerlinGermany
  7. 7.Department of Physics, Center for Computational and Integrative BiologyRutgers University-CamdenCamdenUSA
  8. 8.School of Physics and Complex and Adaptive Systems LaboratoryUniversity College DublinDublin 4Ireland
  9. 9.Institute of Computational and Molecular ScienceTemple UniversityPhiladelphiaUSA
  10. 10.Department of Artificial IntelligenceUniversity of GranadaGranadaSpain
  11. 11.Department of Chemistry and Biomedical Sciences and Centre for Biomaterials ChemistryLinnæus UniversityKalmarSweden
  12. 12.Laboratoire de Biochimie ThéoriqueIBPC and CNRSParisFrance
  13. 13.Université de Lorraine, SRSMCVandoeuvre-Lès-NancyFrance
  14. 14.Lomonosov Moscow State UniversityMoscowRussian Federation
  15. 15.Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of AthensAthensGreece
  16. 16.Department of ChemistryUniversity of SouthamptonSouthamptonUK
  17. 17.Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research GroupUniversity of AlbertaEdmontonCanada
  18. 18.Department of Experimental and Health Sciences, Research Programme on Biomedical Informatics (GRIB)Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
  19. 19.CNRS, SRSMCVandoeuvre-Lès-NancyFrance
  20. 20.Department of Molecular Biology and Genetics, Howard Hughes Medical InstituteJohns Hopkins University School of MedicineBaltimoreUSA
  21. 21.University Chemical LaboratoriesUniversity of CambridgeCambridgeUK
  22. 22.Oak Ridge National LaboratoryOak RidgeUSA
  23. 23.Theoretical Molecular Biophysics, Department of PhysicsFreie Universität BerlinBerlinGermany

Personalised recommendations