The Journal of Membrane Biology

, Volume 248, Issue 5, pp 909–917 | Cite as

Gene Electrotransfer of Canine Interleukin 12 into Canine Melanoma Cell Lines

  • Ursa Lampreht
  • Urska Kamensek
  • Monika Stimac
  • Gregor Sersa
  • Natasa Tozon
  • Masa Bosnjak
  • Andreja Brozic
  • Geraldo Gileno de Sá Oliveira
  • Takayuki Nakagawa
  • Kohei Saeki
  • Maja CemazarEmail author


A gene electrotransfer (GET) of interleukin 12 (IL-12) had already given good results when treating tumors in human and veterinary clinical trials. So far, plasmids used in veterinary clinical studies encoded a human or a feline IL-12 and an ampicillin resistance gene, which is not recommended by the regulatory agencies to be used in clinical trials. Therefore, the aim of the current study was to construct the plasmid encoding a canine IL-12 with kanamycin antibiotic resistance gene that could be used in veterinary clinical oncology. The validation of the newly constructed plasmid was carried out on canine malignant melanoma cells, which have not been used in GET studies so far, and on human malignant melanoma cells. Canine and human malignant melanoma cell lines were transfected with plasmid encoding enhanced green fluorescence protein at different pulse parameter conditions to determine the transfection efficiency and cell survival. The IL-12 expression of the most suitable conditions for GET of the plasmid encoding canine IL-12 was determined at mRNA level by the qRT-PCR and at protein level with the ELISpot assay. The obtained results showed that the newly constructed plasmid encoding canine IL-12 had similar or even higher expression capacity than the plasmid encoding human IL-12. Therefore, it represents a promising therapeutic plasmid for further IL-12 gene therapy in clinical studies for spontaneous canine tumors. Additionally, it also meets the main regulatory agencies’ (FDA and EMA) criteria.


Canine IL-12 Canine melanoma cell lines Electroporation Gene electrotransfer Kanamycin Plasmid DNA 



The authors would like to acknowledge M. Lavric for her help with cell cultures. This work was financially supported by the Slovenian Research Agency (programs P3-0003 and P1-0140, Projects J3-4259, J3-6796 and J3-6793). The research was conducted within the scope of LEA EBAM (French-Slovenian European Associated Laboratory: Pulsed Electric Fields Applications in Biology and Medicine) and within the COST TD1104 Action.


  1. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3:409–417PubMedGoogle Scholar
  2. Bloquel C, Fabre E, Bureau MF, Scherman D (2004) Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 6(Suppl 1):S11–S23CrossRefPubMedGoogle Scholar
  3. Bosnjak M, Lorente BC, Pogacar Z, Makovsek V, Cemazar M (2014) Different incubation times of cells after gene electrotransfer in fetal bovine serum affect cell viability, but not transfection efficiency. J Membr Biol 247:421–428CrossRefPubMedGoogle Scholar
  4. Buttner M, Belke-Louis G, Rziha HJ, McInnes C, Kaaden OR (1998) Detection, cDNA cloning and sequencing of canine interleukin 12. Cytokine 10:241–248CrossRefPubMedGoogle Scholar
  5. Cemazar M, Jarm T, Miklavcic D, Lebar AM, Ihan A, Kopitar NA, Sersa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electromagn Biol Med 17:263–272Google Scholar
  6. Cemazar M, Wilson I, Dachs GU, Tozer GM, Sersa G (2004) Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy—spatial and time dependent distribution. BMC Cancer 4:81PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cemazar, M, Sersa, G, Pavlin, D, Tozon, N (2011) Intramuscular IL-12 electrogene therapy for treatment of spontaneous canine tumors, targets in gene therapy, Prof. Yongping You (Ed.), ISBN: 978-953-307-540-2, InTech, doi:  10.5772/20734. Accessed 13 Jan 2015
  8. Chuang TF, Lee SC, Liao KW, Hsiao YW, Lo CH, Chiang BL, Lin XZ, Tan MH, Chu RM (2009) Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int J Cancer 125:698–707CrossRefPubMedGoogle Scholar
  9. Cutrera J, Torrero M, Shiomitsu K, Mauldin N, Li S (2008) Intratumoral bleomycin and IL-12 electrochemogenetherapy for treating head and neck tumors in dogs. Methods Mol Biol 423:319–325CrossRefPubMedGoogle Scholar
  10. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903PubMedCentralCrossRefPubMedGoogle Scholar
  11. Dean DA (2013) Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol 246:737–744PubMedCentralCrossRefPubMedGoogle Scholar
  12. Delteil C, Teissie J, Rols MP (2000) Effect of serum on in vitro electrically mediated gene delivery and expression in mammalian cells. Biochim Biophys Acta 1467:362–368CrossRefPubMedGoogle Scholar
  13. dos Santos LR, Barrouin-Melo SM, Chang YF, Olsen J, McDonough SP, Quimby F, dos Santos WL, Pontes-de-Carvalho LC, Oliveira GG (2004) Recombinant single-chain canine interleukin 12 induces interferon gamma mRNA expression in peripheral blood mononuclear cells of dogs with visceral leishmaniasis. Vet Immunol Immunopathol 98:43–48CrossRefPubMedGoogle Scholar
  14. EMA (European Medicines Agency) (2011) EMA/CAT/GTWP/44236/2009: Reflection paper on design modifications of gene therapy medicinal products during development. Retrieved December 20, 2014 from
  15. FDA (U.S. Food and Drug Administration) (1996) PTC Document Docket No 96-N-0400: Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Retrieved December 20, 2014 from
  16. Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H (2008) Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 15:537–544CrossRefPubMedGoogle Scholar
  17. Gillard M, Cadieu E, De Brito C, Abadie J, Vergier B, Devauchelle P, Degorce F, Dreano S, Primot A, Dorso L, Lagadic M, Galibert F, Hedan B, Galibert MD, Andre C (2014) Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas. Pigment Cell Melanoma Res 27:90–102CrossRefPubMedGoogle Scholar
  18. Guo H, Hao R, Wei Y, Sun D, Sun S, Zhang Z (2012) Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol 245:789–795CrossRefPubMedGoogle Scholar
  19. Inoue K, Ohashi E, Kadosawa T, Hong SH, Matsunaga S, Mochizuki M, Nishimura R, Sasaki N (2004) Establishment and characterization of four canine melanoma cell lines. J Vet Med Sci 66:1437–1440CrossRefPubMedGoogle Scholar
  20. Kung AL (2007) Practices and pitfalls of mouse cancer models in drug discovery. Adv Cancer Res 96(96):191–212PubMedGoogle Scholar
  21. Liew A, Andre FM, Lesueur LL, De Menorval MA, O’Brien T, Mir LM (2013) Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum Gene Ther Methods 24:289–297PubMedCentralCrossRefPubMedGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  23. Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16CrossRefPubMedGoogle Scholar
  24. Oliveira PH, Mairhofer J (2013) Marker-free plasmids for biotechnological applications—implications and perspectives. Trends Biotechnol 31(9):539–547CrossRefPubMedGoogle Scholar
  25. Pavlin D, Cemazar M, Cor A, Sersa G, Pogacnik A, Tozon N (2011) Electrogene therapy with interleukin-12 in canine mast cell tumors. Radiol Oncol 45:31–39PubMedCentralCrossRefPubMedGoogle Scholar
  26. Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG, Hansson MG, Paradiso A, Ribatti D (2013) A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit Rev Oncol Hematol 88:187–197CrossRefPubMedGoogle Scholar
  27. Reed SD, Fulmer A, Buckholz J, Zhang B, Cutrera J, Shiomitsu K, Li S (2010) Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs (Retraction of vol 17, pg 571, 2010). Cancer Gene Ther 17:826CrossRefGoogle Scholar
  28. Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423PubMedCentralCrossRefPubMedGoogle Scholar
  29. Scelsi D, Mevio N, Bertino G, Occhini A, Brazzelli V, Morbini P, Benazzo M (2013) Electrochemotherapy as a new therapeutic strategy in advanced Merkel cell carcinoma of head and neck region. Radiol Oncol 47:366–369PubMedCentralCrossRefPubMedGoogle Scholar
  30. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342CrossRefPubMedGoogle Scholar
  31. Shebl FM, Pinto LA, Garcia-Pineres A, Lempicki R, Williams M, Harro C, Hildesheim A (2010) Comparison of mRNA and protein measures of cytokines following vaccination with human papillomavirus-16 L1 virus-like particles. Cancer Epidemiol Biomark Prev 19:978–981CrossRefGoogle Scholar
  32. Solensky R (2003) Hypersensitivity reactions to beta-lactam antibiotics. Clin Rev Allergy Immunol 24:201–220CrossRefPubMedGoogle Scholar
  33. Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, Cemazar M, Dam E, Vasseur B, Attali P, Mir LM, Gehl J (2013) Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 24:99–107CrossRefPubMedGoogle Scholar
  34. Tesic N, Cemazar M (2013) In vitro targeted gene electrotransfer to endothelial cells with plasmid DNA containing human endothelin-1 promoter. J Membr Biol 246:783–791CrossRefPubMedGoogle Scholar
  35. Tozon N, Pavlin D, Sersa G, Dolinsek T, Cemazar M (2014) Electrochemotherapy with intravenous bleomycin injection: an observational study in superficial squamous cell carcinoma in cats. J Feline Med Surg 16:291–299CrossRefPubMedGoogle Scholar
  36. Vandermeulen G, Marie C, Scherman D, Preat V (2011) New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther 19:1942–1949PubMedCentralCrossRefPubMedGoogle Scholar
  37. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232PubMedCentralPubMedGoogle Scholar
  38. Zhou W, Xiong Z, Liu Y, Yao C, Li C (2012) Low voltage irreversible electroporation induced apoptosis in HeLa cells. J Cancer Res Ther 8:80–85CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ursa Lampreht
    • 1
  • Urska Kamensek
    • 1
  • Monika Stimac
    • 1
  • Gregor Sersa
    • 1
  • Natasa Tozon
    • 2
  • Masa Bosnjak
    • 1
  • Andreja Brozic
    • 3
  • Geraldo Gileno de Sá Oliveira
    • 4
  • Takayuki Nakagawa
    • 5
  • Kohei Saeki
    • 5
  • Maja Cemazar
    • 1
    • 6
    Email author
  1. 1.Department of Experimental OncologyInstitute of Oncology LjubljanaLjubljanaSlovenia
  2. 2.Small Animal Clinic, Veterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of CytopathologyInstitute of Oncology LjubljanaLjubljanaSlovenia
  4. 4.Laboratory of Pathology and Bio-Intervention, Goncalo Moniz Research Center, Oswaldo Cruz FoundationNational Institute of Science and Technology of Tropical Diseases (INCT-DT)SalvadorBrazil
  5. 5.Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life sciencesThe University of TokyoTokyoJapan
  6. 6.Faculty of Health SciencesUniversity of PrimorskaIzolaSlovenia

Personalised recommendations