Skip to main content
Log in

Thermal Stability of Dopamine Transporters

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The thermal stabilities of the rat and mouse dopamine transporter (DAT) proteins were studied within the temperature range of 0–37 °C. The inactivation of the protein was followed by monitoring changes in radioligand-specific binding. We found that the process followed a rate equation with first-order kinetics and was characterized by having a single rate constant k inact. The activation energies (E a) that were calculated from the Arrhenius plots (ln k inact vs. 1/T) were 43 ± 5 and 45 ± 6 kJ/mol for the rat (rDAT) and mouse (mDAT) transporters, respectively, and 44 ± 7 kJ/mol for rDAT from PC-6.3 cell line. These E a values were similar to the E a values of thermal inactivation of the muscarinic receptor from rat brain cortex and to the thermal inactivation of other transmembrane proteins. However, all of these activation energy values were significantly lower than the E a values for soluble single-subunit proteins of similar size. These results therefore suggest that the thermal stability of transmembrane proteins may be governed to a significant extent by cell membrane properties and by interactions between the membrane components and the protein. In contrast, the stability of soluble proteins seems to be mostly governed by protein structure and size, which determine the sum of the stabilizing intramolecular interactions within the protein molecule. It is therefore not surprising that cell membrane properties and composition may have significant effects on the functional properties of transmembrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arroyo-Reyna A, Hernández-Arana A (1995) The thermal denaturation of stem bromelain is consistent with an irreversible two-state model. Biochim Biophys Acta 1248:123–128

    Article  PubMed  Google Scholar 

  • Barrera FN, Alcaraz LA, Hurtado-Gómez E, Neira JL (2008) Into the lipid realm: stability and thermodynamics of membrane proteins. Curr Protein Pept Sci 9:626–637

    Article  CAS  PubMed  Google Scholar 

  • Curnow P, Booth PJ (2007) Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding. Proc Natl Acad Sci USA 104:18970. doi:10.2307/25450541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Y, Liu R, Rong J, Xiong S (2014) Heat-induced denaturation and aggregation of actomyosin and myosin from yellowcheek carp during setting. Food Chem 149:237–243. doi:10.1016/j.foodchem.2013.10.123

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg DS, Crothers DM (1979) Physical chemistry: with applications to the life sciences. Benjamin/Cummings Publishing Company, Menlo Park, CA

    Google Scholar 

  • Emond P, Garreau L, Chalon S et al (1997) Synthesis and ligand binding of nortropane derivatives: N-substituted 2β-carbomethoxy-3β-(4′-iodophenyl)nortropane and N-(3-iodoprop-(2E)-enyl)-2β-carbomethoxy-3β-(3′,4′-disubstituted phenyl)nortropane. New high-affinity and selective compounds for the Do. J Med Chem 2623:1366–1372

    Article  Google Scholar 

  • Emond P, Guilloteau D, Chalon S (2008) PE2I: a radiopharmaceutical for in vivo exploration of the dopamine transporter. CNS Neurosci Ther 14:47–64. doi:10.1111/j.1527-3458.2007.00033.x

    Article  CAS  PubMed  Google Scholar 

  • Foot M, Cruz TF, Clandinin MT (1982) Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Biochem J 208:631–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galisteo ML, Sanchez-Ruiz JM (1993) Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin. Eur Biophys J 22:25–30

    Article  CAS  Google Scholar 

  • Holton KL, Loder MK, Melikian HE (2005) Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 8:881–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong WC, Amara SG (2010) Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J Biol Chem 285:32616–32626. doi:10.1074/jbc.M110.150565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones KT, Zhen J, Reith MEA (2012) Importance of cholesterol in dopamine transporter function. J Neurochem 123:700–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadota T, Yamaai T, Saito Y et al (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44:989–996

    Article  CAS  PubMed  Google Scholar 

  • Kopajtic TA, Katz JL, Newman AH et al (2010) Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability. J Pharmacol Exp Ther 335:703–714. doi:10.1124/jpet.110.171629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jørgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640. doi:10.1124/pr.108.000869

    Article  CAS  PubMed  Google Scholar 

  • Langel U, Rinken A, Tähepõld L, Järv J (1982) Kinetics of the muscarinic receptor inactivation. Neirokhimia 1:341–351

    Google Scholar 

  • Le Bihan T, Gicquaud C (1993) Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem Biophys Res Commun 194:1065–1073

    Article  PubMed  Google Scholar 

  • Levi V, Rossi JPFC, Echarte MM et al (2000) Thermal stability of the plasma membrane calcium pump. Quantitative analysis of its dependence on lipid–protein interactions. J Membr Biol 173:215–225. doi:10.1007/s002320001021

    Article  CAS  PubMed  Google Scholar 

  • Lonka-Nevalaita L, Lume M, Leppänen S et al (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J Neurosci 30:11403–11413. doi:10.1523/JNEUROSCI.5888-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light driven proton pump in Halobacterium halobium. Biophys J 15:955–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackler S, Kleyman T, Cha X (1998) Regulation of the Na+/K+-ATPase pump in vitro after long-term exposure to cocaine: role of serotonin. J Pharmacol Exp Ther 285:835–843

    CAS  PubMed  Google Scholar 

  • Mall R, Naik G, Mina U, Mishra SK (2013) Purification and characterization of a thermostable soluble peroxidase from Citrus medica leaf. Prep Biochem Biotechnol 43:137–151. doi:10.1080/10826068.2012.711793

    Article  CAS  PubMed  Google Scholar 

  • Maurya SR, Mahalakshmi R (2014) Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 9:1–13

    Google Scholar 

  • Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  Google Scholar 

  • Parnas ML, Vaughan RA (2008) Molecular structure and composition of dopamine transporters. In: Trudell ML, Izenwasser S (eds) Dopamine transporters, chemistry, biology, and pharmacology. Wiley, Hoboken, pp 73–95

    Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potekhin SA, Loseva OI, Tiktopulo EI, Dobritsa AP (1999) Transition state of the rate-limiting step of heat denaturation of Cry3A delta-endotoxin. Biochemistry 38:4121–4127

    Article  CAS  PubMed  Google Scholar 

  • Powl AM, Miles AJ, Wallace BA (2012) Transmembrane and extramembrane contributions to membrane protein thermal stability: studies with the NaChBac sodium channel. BBA 1818:889–895

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ruiz JM, Lopez-Lacomba JL, Mateo PL et al (1988a) Analysis of the thermal unfolding of porcine procarboxypeptidase A and its functional pieces by differential scanning calorimetry. Eur J Biochem 176:225–230

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Ruiz JM, López-Lacomba JL, Cortijo M, Mateo PL (1988b) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652

    Article  PubMed  Google Scholar 

  • Shin I, Silman I, Bon C, Weiner L (1998) Liposome-catalyzed unfolding of acetylcholinesterase from Bungarus fasciatus. Biochemistry 37:4310–4316. doi:10.1021/bi973005q

    Article  CAS  PubMed  Google Scholar 

  • Shnyrov VL, Martínez LD, Roig MG et al (1999) Irreversible thermal denaturation of lipase B from Candida rugosa. Thermochim Acta 325:143–149

    Article  CAS  Google Scholar 

  • Stepanov V (2009) Slow conformational changes in dopamine transporter interaction with its ligands. Dissertation, University of Tartu

  • Stepanov V, Järv J (2006) Slow isomerization step in the interaction between mouse dopamine transporter and dopamine re-uptake inhibitor N-(3-iodoprop-2E-enyl)-2beta-carbo-[3H]methoxy-3beta-(4′-methylphenyl)nortropane. Neurosci Lett 410:218–221

    Article  CAS  PubMed  Google Scholar 

  • Stepanov V, Schou M, Järv J, Halldin C (2007) Synthesis of 3H-labeled N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I) and its interaction with mice striatal membrane fragments. Appl Radiat Isot 65:293–300

    Article  CAS  PubMed  Google Scholar 

  • UniProt (2014a) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42:D191–D198. doi:10.1093/nar/gkt1140

    Article  Google Scholar 

  • UniProt (2014b) http://www.uniprot.org/uniprot/P09954. Accessed 20 Apr 2014

  • UniProt (2014c) http://www.uniprot.org/uniprot/Q43880. Accessed 20 Apr 2014

  • UniProt (2014d) http://www.uniprot.org/uniprot/Q5EGP3. Accessed 20 Apr 2014

  • UniProt (2014e) http://www.uniprot.org/uniprot/P08482. Accessed 20 Apr 2014

  • UniProt (2014f) http://www.uniprot.org/uniprot/Q9DDB8. Accessed 20 Apr 2014

  • UniProt (2014g) http://www.uniprot.org/uniprot/P45880. Accessed 25 Apr 2014

  • UniProt (2014h) http://www.uniprot.org/uniprot/P14518. Accessed 20 Apr 2014

  • UniProt (2014i) http://www.uniprot.org/uniprot/P20261. Accessed 20 Apr 2014

  • UniProt (2014j) http://www.uniprot.org/uniprot/P23977. Accessed 20 Apr 2014

  • UniProt (2014k) http://www.uniprot.org/uniprot/P62740. Accessed 20 Apr 2014

  • UniProt (2014l) http://www.uniprot.org/uniprot/Q61327. Accessed 20 Apr 2014

  • UniProt (2014m) http://www.uniprot.org/uniprot/Q92035. Accessed 20 Apr 2014

  • Zhadan GG, Shnyrov VL (1994) Differential-scanning-calorimetric study of the irreversible thermal denaturation of 8 kDa cytotoxin from the sea anemone Radianthus macrodactylus. Biochem J 299(Pt 3):731–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Grant IUT20-15 of the Estonian Ministry of Education and Research. The authors are grateful to Dr. Monika Jürgenson from the Institute of Pharmacology, University of Tartu for providing samples of rodent striata. The authors thank Professor Mart Saarma and MSc Maria Lume for providing PC-6.3 cells.

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siim Kukk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukk, S., Stepanov, V. & Järv, J. Thermal Stability of Dopamine Transporters. J Membrane Biol 248, 775–781 (2015). https://doi.org/10.1007/s00232-015-9794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9794-9

Keywords

Navigation