Skip to main content
Log in

Morphological Effects Induced In Vitro by Propranolol on Human Erythrocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Despite the extended use and well-documented information, there are insufficient reports concerning the effects of propranolol on the structure and functions of cell membranes, particularly those of human erythrocytes. Aimed to better understand the molecular mechanisms of its interactions with cell membranes, human erythrocyte and molecular models of the red cell membrane were utilized. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of propranolol to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction. Moreover, we took advantage of the capability of differential scanning calorimetry to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from propranolol interaction with DMPC and DMPE multilamellar vesicles. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy. Results indicated that propranolol induced morphological changes to human erythrocytes and interacted in a concentration-dependent manner with phospholipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RBC:

Red blood cell suspension

SEM:

Scanning electron microscopy

DMPC:

Dimyristoylphosphatidylcholine

DMPE:

Dimyristoylphosphatidylcholine

DSC:

Differential scanning calorimetry

MLV:

Multilamellar vesicles

SEM:

Scanning electron microscopy

DM:

Defocusing microscopy

References

  • Albertini G, Donati C, Phadke RS, Ponzi Bossi MG, Rustichelli F (1990) Thermodynamics and structural effects of propanolol on DPPC liposomes. Chem Phys Lipids 55:331–337

    Article  CAS  PubMed  Google Scholar 

  • Boon JM, Smith BD (2000) Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281

    Article  Google Scholar 

  • Chen JY, Huestis WH (1997) Role of membrane lipid distribution in chlorpromazine-induced shape change of human erythrocytes. Biochim Biophys Acta 1323:299–309

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank JM (2010) Beta blockers in hypertension. Lancet 376:415–416

    Article  PubMed  Google Scholar 

  • Devaux PF, Zachowsky A (1994) Maintenance and consequences of membrane phospholipids asymmetry. Chem Phys Lipids 73:107–120

    Article  CAS  Google Scholar 

  • Etcheverry S, Gallardo MJ, Solano P, Suwalsky M, Mesquita ON, Saavedra C (2012) Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy. J Biomed Opt 17:1060131–1060136

    Article  Google Scholar 

  • Först G, Cwiklik L, Jurkiewicz P, Schubert R, Hof M (2014) Interactions of beta- blockers with model lipid membranes: molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations. Eur J Pharm Biopharm 87:559–569

    Article  PubMed  Google Scholar 

  • Freemantle N, Cleland J, Young P, Harrison J (1999) Beta Blockade after myocardial infarction: systematic review and meta regression analysis. Br Med J 318:1730–17377

    Article  CAS  Google Scholar 

  • Godin DV, Ng TW, Tuchek JM (1976) Studies on the interaction of propranolol with erythrocyte membranes. Biochim Biophys Acta 436:757–773

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Costa D, Lima JLFC, Fernandes E (2006) Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen and nitrogen species? Bioorg Med Chem 14:4568–4577

    Article  CAS  PubMed  Google Scholar 

  • Herbette L, Katz AM, Sturtevant JM (1983) Comparisons of the interaction of propranolol and timolol with model and biological membranes. Mol Pharmacol 24:259–269

    CAS  PubMed  Google Scholar 

  • Herbette L, Napolitano CA, Messineo FC, Katz AM (1985) Interaction of amphiphilic molecules with biological membranes. A model for non-specific and specific drug effects with membranes. In: Harris P, Poole-Wilson PA (eds) Advances in myocardiology, vol 5. Plenum, New York

    Google Scholar 

  • Herbette LG, Chester DW, Rhodes DG (1986) Structural analysis of drug molecules in biological membranes. Biophys J 49:91–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herbette LG, Trumbore M, Chester DW, Katz AM (1988) Possible molecular basis for the pharmacokinetics and pharmacodynamics of three membrane-active drugs: propanolol, nimodipine and amiodarone. J Mol Cell Cardiol 20:373–378

    Article  CAS  PubMed  Google Scholar 

  • Ishihama Y, Nakamura M, Miwa T, Kajima T, Asakawa N (2002) A rapid method for pK(a) determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J Pharm Sci 91:933–942

    Article  CAS  PubMed  Google Scholar 

  • Jemiola-Rzeminska M, Rivera C, Suwalsky M, Strzalka K (2007) Interaction of arsenic compounds with model phospholipid membranes. Thermochim Acta 458:132–137

    Article  CAS  Google Scholar 

  • Jovic-Stosic J, Gligic B, Putic V, Brajkovic G, Spasic R (2011) Severe propranolol and ethanol overdose with wide complex tachycardia treated with intravenous lipid emulsion: a case report. Clin Toxicol 49:426–430

    Article  CAS  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    Article  CAS  PubMed  Google Scholar 

  • Kramer JH, Spurney CF, Iantorno M, Tziros C, Chmielinska JJ, Mak IT, Weglicki WB (2012) D-Propranolol protects against oxidative stress and progressive cardiac dysfunction in iron overloaded rats. Can J Physiol Pharmacol 90:1257–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis NAH, McElhaney RN (1993) Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J 64:1081–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim G, Wortis M (2002) Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA 99:16766–16769

    Article  Google Scholar 

  • Macvey FK, Corke CF (1991) Extracorporeal circulation in the management of propranolol massive overdose. Anaesthesia 46:744–746

    Article  Google Scholar 

  • Malheiros SVP, Brito MA, Brites D, Correa MN (2000) Membrane effects of trifluoperazine, dibucaine and praziquantel on human erythrocytes. Chem Biol Interact 126:79–95

    Article  CAS  PubMed  Google Scholar 

  • Mannhold R (2005) The impact of lipophilicity in drug research: a case report on beta-blockers. Med Chem 5:197–205

    CAS  Google Scholar 

  • Marsh D (1991) General features of phospholipid phase transitions. Chem Phys Lipids 57:109–120

    Article  CAS  PubMed  Google Scholar 

  • Mesquita LG, Agero U, Mesquita ON (2006) Defocusing microscopy: an approach for red blood cell optics. Appl Phys Lett 88:1339011–1339013

    Article  Google Scholar 

  • Pereira-Leite C, Carneiro C, Soares JX, Afonso C, Nunes C, Lúcio M, Reis S (2006) Perturbing effects of carvedilol on a model membrane system: role of lipophilicity and chemical structure. Biophys Chem 119:307–315

    Article  Google Scholar 

  • Pereira-Leite C, Carneiro C, Soares JX, Afonso C, Nunes C, Lúcio M, Reis S (2013) Biophysical characterization of the drug–membrane interactions: the case of propanolol and acebutolol. Eur J Pharm Biopharm 84:183–191

    Article  CAS  PubMed  Google Scholar 

  • Rüppel D, Kapitzaa HG, Gallaa HJ, Sixla F, Sackmann E (1982) On the microstructure and phase diagram of dimyristoylphosphatidylcholine-glycophorin bilayers. The role of defects and the hydrophilic lipid-protein interaction. Biochim Biophys Acta 692:1–17

    Article  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte induced interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stapleton MP (1997) Sir James Black and propranolol. The role of the basic sciences in the history of cardiovascular pharmacology. Tex Heart Inst J 24:336–342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Surewicz KW (1982) Propranolol induced structural changes in human erythrocyte ghost membranes: a spin labeled study. Biochem Pharmacol 31:691–694

    Article  CAS  PubMed  Google Scholar 

  • Surewicz KW, Leyko W (1981) Interaction of propranolol with model phospholipid membranes. Monolayer, spin label and fluorescence spectroscopy studies. Biochim Biophys Acta 643:387–397

    Article  CAS  PubMed  Google Scholar 

  • Surewicz KW, Fijalkowska I, Leyko W (1981) The effect of propranolol on the osmotic fragility of red cells and liposomes and the influence of the drug on glycerol transport across the membrane of red cells. Biochem Pharmacol 30:839–842

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M (1996) Phospholipid bilayers. In: Salamone JC (ed) Polymeric materials encyclopedia. CRC, Boca Raton, pp 5073–5078

    Google Scholar 

  • Suwalsky M, Sánchez I, Bagnara M, Sotomayor CP (1994) Interaction of antiarrhythmic drugs with model membranes. Biochim Biophys Acta 1195:189–196

    Article  PubMed  Google Scholar 

  • Suwalsky M, Manrique M, Villena F, Sotomayor CP (2009) Structural effects in vitro of the anti-inflammatory drug diclofenac on human erythrocytes and molecular models of cell membranes. Biophys Chem 141:34–40

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Zambrano P, Mennickent S, Villena F, Sotomayor CV, Aguilar LF, Bolognin S (2011) Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models. Biochem Biophys Res Commun 406:320–325

    Article  CAS  PubMed  Google Scholar 

  • Suwalsky M, Belmar J, Villena F, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K (2013) Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes. Arch Biochem Biophys 539:9–19

    Article  CAS  PubMed  Google Scholar 

  • Van der Vring JA (1999) Combination of calcium channel blockers and beta blockers for patients with exercise-induced angina pectoris: a double-blind parallel-group comparison of different classes of calcium channel blockers. Angiology 50:447–454

    Article  PubMed  Google Scholar 

  • Virtanen JA, Cheng KH, Somerharju P (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci USA 95:4964–4969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • WHO (2013) Model list of essential medicines

  • Wong L, Nation RL, Chiou WL, Mehta PK (1979) Plasma concentrations of propranolol and 4-hydroxypropranolol during chronic oral propranolol therapy. Br J Clin Pharmac 8:163–167

    Article  CAS  Google Scholar 

  • Zimmermann B, Soumpasis DM (1985) Effects of monovalent cations on red cell shape and size. Cell Biophys 7:115–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

To FONDECYT (Project 1130043). This work was partially supported from PIA-CONICYT PFB0824 and from FONDECYT 3140167. Calorimetric measurements were carried out using the instrument purchased thanks to financial support of European Regional Development Fund (contract No. POIG.02.01.00-12-167/08, Project Malopolska Centre of Biotechnology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Suwalsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwalsky, M., Zambrano, P., Villena, F. et al. Morphological Effects Induced In Vitro by Propranolol on Human Erythrocytes. J Membrane Biol 248, 683–693 (2015). https://doi.org/10.1007/s00232-015-9780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9780-2

Keywords

Navigation