Skip to main content
Log in

Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism, and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3–5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately −8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between −9.5 and −12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8–TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

T-domain:

Diphtheria toxin T-domain

W:

State membrane-incompetent state populated at neutral pH

W+ :

State membrane-competent (protonated) state populated at acidic pH

I:

State interfacial state

T:

State(s) transmembrane state(s)

LUV:

Large unilamellar vesicles

POPC:

Palmitoyl-oleoyl-phosphatidylcholine

POPG:

Palmitoyl-oleoyl-phosphatidylglycerol

FCS:

Fluorescence correlation spectroscopy

CD:

Circular dichroism

DSC:

Differential scanning calorimetry

ΔH°:

Enthalpy change

ΔG:

Gibbs free energy

Tm :

Melting temperature

ΔCp:

Change in calorific capacity

Kx :

Partitioning coefficient

References

  • Bennett MJ, Eisenberg D (1994) Refined structure of monomeric diphtheria toxin at 2.3 Å resolution. Protein Sci 3:1464–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clamme JP, Azoulay J, Mely Y (2003) Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys J 84:1960–1968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66:482–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haugland RP (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes, Inc., Eugene

    Google Scholar 

  • Hayashibara M, London E (2005) Topography of diphtheria toxin A chain inserted into lipid vesicles. Biochemistry 44:2183–2196

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, Kim H, Bihlmaler K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40:89–107

    Article  Google Scholar 

  • Kurnikov IV, Kyrychenko A, Flores-Canales JC, Rodnin MV, Simakov N, Vargas-Uribe M, Posokhov YO, Kurnikova M, Ladokhin AS (2013) pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines. J Mol Biol 425:2752–2764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kyrychenko A, Posokhov YO, Rodnin MV, Ladokhin AS (2009) Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain. Biochemistry 48:7584–7594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ladokhin AS (2009) Fluorescence spectroscopy in thermodynamic and kinetic analysis of pH-dependent membrane protein insertion. Methods Enzymol 466:19–42

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS (2013) pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Toxins (Basel) 5:1362–1380

    Article  CAS  Google Scholar 

  • Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235–245

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, Legmann R, Collier RJ, White SH (2004) Reversible refolding of the diphtheria toxin T-domain on lipid membranes. Biochemistry 43:7451–7458

    Article  CAS  PubMed  Google Scholar 

  • Lopez MM, Makhatadze GI (2002) Differential scanning calorimetry. Methods Mol Biol 173:113–119

    CAS  PubMed  Google Scholar 

  • Lundin C, Kim H, Nilsson I, White SH, von Heijne G (2008) Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices. Proc Natl Acad Sci USA 105:15702–15707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makhatadze GI, Medvedkin VN, Privalov PL (1990) Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Biopolymers 30:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  PubMed  Google Scholar 

  • Murphy JR (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel) 3:294–308

    Article  CAS  Google Scholar 

  • Oh KJ, Senzel L, Collier RJ, Finkelstein A (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci USA 96:8467–8470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palchevskyy SS, Posokhov YO, Olivier B, Popot JL, Pucci B, Ladokhin AS (2006) Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Biochemistry 45:2629–2635

    Article  CAS  PubMed  Google Scholar 

  • Posokhov YO, Rodnin MV, Das SK, Pucci B, Ladokhin AS (2008a) FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants. Biophys J 95:L54–L56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Posokhov YO, Rodnin MV, Lu L, Ladokhin AS (2008b) Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching. Biochemistry 47:5078–5087

    Article  CAS  PubMed  Google Scholar 

  • Rodnin MV, Posokhov YO, Contino-Pepin C, Brettmann J, Kyrychenko A, Palchevskyy SS, Pucci B, Ladokhin AS (2008) Interactions of fluorinated surfactants with diphtheria toxin T-domain: testing new media for studies of membrane proteins. Biophys J 94:4348–4357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodnin MV, Kyrychenko A, Kienker P, Sharma O, Posokhov YO, Collier RJ, Finkelstein A, Ladokhin AS (2010) Conformational switching of the diphtheria toxin T domain. J Mol Biol 402:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodnin MV, Kyrychenko A, Kienker P, Sharma O, Vargas-Uribe M, Collier RJ, Finkelstein A, Ladokhin AS (2011) Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain. Biophys J 101:L41–L43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosconi MP, London E (2002) Topography of helices 5–7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. J Biol Chem 277:16517–16527

    Article  CAS  PubMed  Google Scholar 

  • Rosconi MP, Zhao G, London E (2004) Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: At low pH, helices 8 and 9 form a transmembrane hairpin but helices 5–7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry 43:9127–9139

    Article  CAS  PubMed  Google Scholar 

  • Senzel L, Huynh PD, Jakes KS, Collier RJ, Finkelstein A (1998) The diphtheria toxin channel-forming T domain translocates its own NH2-terminal region across planar bilayers. J Gen Physiol 112:317–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senzel L, Gordon M, Blaustein RO, Oh KJ, Collier RJ, Finkelstein A (2000) Topography of diphtheria toxin’s T domain in the open channel state. J Gen Physiol 115:421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas-Uribe M, Rodnin MV, Kienker P, Finkelstein A, Ladokhin AS (2013a) Crucial role of H322 in folding of the diphtheria toxin T-domain into the open-channel state. Biochemistry 52:3457–3463

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Uribe M, Rodnin MV, Ladokhin AS (2013b) Comparison of membrane insertion pathways of the apoptotic regulator Bcl-xL and the diphtheria toxin translocation domain. Biochemistry 52:7901–7909

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1982) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol 96:84–93

    Article  Google Scholar 

  • Walters J, Milam SL, Clark AC (2009) Practical approaches to protein folding and assembly: spectroscopic strategies in thermodynamics and kinetics. Methods Enzymol 455:1–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, London E (2009) The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. Biochemistry 48:10446–10456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Malenbaum SE, Kachel K, Zhan HJ, Collier RJ, London E (1997) Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. J Biol Chem 272:25091–25098

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC, Ladokhin AS, Hristova K (1998) Protein folding in membranes: determining the energetics of peptide-bilayer interactions. Methods Enzymol 295:62–87

    Article  CAS  PubMed  Google Scholar 

  • Zhan H, Oh KJ, Shin Y-K, Hubbell WL, Collier RJ (1995) Interaction of the isolated transmembrane domain of diphtheria toxin with membranes. Biochemistry 34:4856–4863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Chiranjib Ghatak for his helpful feedback on the design of thermodynamic schemes. This research was supported by NIH Grant GM-069783 (A.S.L.). M.V.U. was partially supported by Fulbright-CONICYT, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Ladokhin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Uribe, M., Rodnin, M.V., Öjemalm, K. et al. Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain. J Membrane Biol 248, 383–394 (2015). https://doi.org/10.1007/s00232-014-9734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9734-0

Keywords

Navigation