The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length

Abstract

The initial steps of membrane disruption by antimicrobial peptides (AMPs) involve binding to bacterial membranes in a surface-bound (S) orientation. To evaluate the effects of lipid composition on the S state, molecular dynamics simulations of the AMPs piscidin 1 (p1) and piscidin 3 (p3) were carried out in four different bilayers: 3:1 DMPC/DMPG, 3:1 POPC/POPG, 1:1 POPE/POPG, and 4:1 POPC/cholesterol. In all cases, the addition of 1:40 piscidin caused thinning of the bilayer, though thinning was least for DMPC/DMPG. The peptides also insert most deeply into DMPC/DMPG, spanning the region from the bilayer midplane to the headgroups, and thereby only mildly disrupting the acyl chains. In contrast, the peptides insert less deeply in the palmitoyl-oleoyl containing membranes, do not reach the midplane, and substantially disrupt the chains, i.e., the neighboring acyl chains bend under the peptide, forming a basket-like conformation. Curvature free energy derivatives calculated from the simulation pressure profiles reveal that the peptides generate positive curvature in membranes with palmitoyl and oleoyl chains but negative curvature in those with myristoyl chains. Curvature inductions predicted with a continuum elastic model follow the same trends, though the effect is weaker, and a small negative curvature induction is obtained in POPC/POPG. These results do not directly speak to the relative stability of the inserted (I) states or ease of pore formation, which requires the free energy pathway between the S and I states. Nevertheless, they do highlight the importance of lipid composition and acyl chain packing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3:238–250

    CAS  Article  Google Scholar 

  2. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  3. Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95:2325–2339

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–81

    CAS  Article  PubMed  Google Scholar 

  5. Chen Z, Rand RP (1998) Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases. Biophys J 74:944–952

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Article  Google Scholar 

  7. Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161:591–611

    CAS  Article  PubMed  Google Scholar 

  8. Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81:243–254

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Fuller N, Benatti CR, Rand RP (2003) Curvature and bending constants for phosphatidylserine-containing membranes. Biophys J 85:1667–1674

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108:7397–7409

    CAS  Article  Google Scholar 

  11. Gruner SM, Parsegian VA, Rand RP (1986) Directly measured deformation energy of phospholipid HII hexagonal phases. Faraday Discuss 81:29–37

    CAS  Article  Google Scholar 

  12. Hallock KJ, Lee D-K, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84:3052–3060

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703

    CAS  PubMed  Google Scholar 

  14. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  PubMed  Google Scholar 

  15. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    CAS  Article  PubMed  Google Scholar 

  16. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Lagüe P, Roux B, Pastor RW (2005) Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. J Mol Biol 354:1129–1141

    Article  PubMed  Google Scholar 

  18. Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893

    CAS  Article  Google Scholar 

  19. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    CAS  Article  PubMed  Google Scholar 

  20. Méléard P et al (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J 72:2616–2629

    PubMed Central  Article  PubMed  Google Scholar 

  21. Nagle JF (2013) Introductory lecture: basic quantities in model biomembranes. Faraday Discuss 161:11–29

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  22. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. Nose S (1984) A unifed formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519

    CAS  Article  Google Scholar 

  24. Perrin BS Jr et al (2014) High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 136:3491–3504

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. Pujals S et al (2013) Curvature engineering: positive membrane curvature induced by epsin N-terminal peptide boosts internalization of octaarginine. ACS Chem Biol 8:1894–1899

    CAS  Article  PubMed  Google Scholar 

  26. Rand RP, Fuller NL, Gruner SM, Parsegian VA (1990) Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochem 29:76–87

    CAS  Article  Google Scholar 

  27. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    CAS  Article  Google Scholar 

  29. Safran SA (1994) Statistical thermodynamics of surfaces, interfaces, and membranes. Westview Press, Boulder

    Google Scholar 

  30. Salnikov ES, Bechinger B (2011) Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophys J 100:1473–1480

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. Salnikov ES, Mason AJ, Bechinger B, Salnikov ES, Mason AJ, Bechinger B (2009) Membrane order perturbation in the presence of antimicrobial peptides by H-2 solid-state NMR spectroscopy. Biochimie 91:734–743

    CAS  Article  PubMed  Google Scholar 

  32. Sodt AJ, Pastor RW (2013) Bending free energy from simulation: correspondence of planar and inverse hexagonal lipid phases. Biophys J 104:2202–2211

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Sodt AJ, Pastor RW (2014) Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys J 106:1958–1969

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Sonne J, Hansen FY, Peters GH (2005) Methodological problems in pressure profile calculations for lipid bilayers. J Chem Phys 122:124903

    Article  PubMed  Google Scholar 

  35. Strandberg E, Tiltak D, Ehni S, Wadhwani P, Ulrich AS (2012) Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim Biophys Acta 1818:1764–1776

    CAS  Article  PubMed  Google Scholar 

  36. Strandberg E, Zerweck J, Wadhwani P, Ulrich Anne S (2013) Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J 104:L9–L11

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. Szleifer I, Kramer D, Ben-Shaul A, Gelbart WM, Safran SA (1990) Molecular theory of curvature elasticity in surfactant films. J Chem Phys 92:6800–6817

    CAS  Article  Google Scholar 

  38. Szule JA, Rand RP (2003) The effects of gramicidin on the structure of phospholipid assemblies. Biophys J 85:1702–1712

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. Venable RM, Luo Y, Gawrisch K, Roux B, Pastor RW (2013) Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. J Phys Chem B 117:10183–10192

    CAS  Article  PubMed  Google Scholar 

  40. Venable RM et al (2014) CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 107:134–145

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. Watson MC, Brandt EG, Welch PM, Brown FLH (2012) Determining biomembrane bending rigidities from simulations of modest size. Phys Rev Lett 109:028102

    Article  PubMed  Google Scholar 

  42. Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  43. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  44. Zemel A, Ben-Shaul A, May S (2008) Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides. J Phys Chem B 112:6988–6996

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Heart, Lung and Blood Institute, and utilized the high-performance computational capabilities at the National Institutes of Health, Bethesda, MD (NHLBI LoBoS cluster).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard W. Pastor.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perrin, B.S., Sodt, A.J., Cotten, M.L. et al. The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length. J Membrane Biol 248, 455–467 (2015). https://doi.org/10.1007/s00232-014-9733-1

Download citation

Keywords

  • Spontaneous curvature
  • Pressure profiles
  • Molecular dynamics simulation
  • Continuum elastic modeling