Skip to main content
Log in

Dynamics of the Plasma Membrane Proton Pump

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Proton transfer over distances longer than that of a hydrogen bond often requires water molecules and protein motions. Following transfer of the proton from the donor to the acceptor, the change in the charge distribution may alter the dynamics of protein and water. To begin to understand how protonation dynamics couple to protein and water dynamics, here we explore how changes in the protonation state affect water and protein dynamics in the AHA2 proton pump. We find that the protonation state of the proton donor and acceptor groups largely affects the dynamics of internal waters and of specific hydrogen bonds, and the orientation of transmembrane helical segments that couple remote regions of the protein. The primary proton donor/acceptor group D684, can interact with water molecules from the cytoplasmic bulk and/or other protein groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bondar A-N, White SH (2012) Hydrogen bond dynamics in membrane protein function. Biochim Biophys Acta 2012:942–950

    Article  Google Scholar 

  • Bondar A-N, Fischer S, Smith JC, Elstner M, Suhai S (2004) Key role of electrostatic interactions in bacteriorhodopsin proton transfer. J Am Chem Soc 126:14668–14677

    Article  CAS  PubMed  Google Scholar 

  • Bondar A-N, Smith JC, Fischer S (2006) Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem Photobiol Sci 5:547–552

    Article  CAS  PubMed  Google Scholar 

  • Bondar A-N, Baudry J, Suhai S, Fischer S, Smith JC (2008) Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. J Phys Chem B 112:14729–14741

    Article  CAS  PubMed  Google Scholar 

  • Borders CLJ, Broadwater JA, Bekeny PA, Salmon JE, Lee AS, Eldridge AM, Pett VB (1994) A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Prot Sci 3:541–548

    Article  CAS  Google Scholar 

  • Braun-Sand S, Sharma PK, Chu ZT, Pisliakov AV, Warshel A (2008) The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. Biochim Biophys Acta 1777:441–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20:431–439

    Article  CAS  PubMed  Google Scholar 

  • Buch-Pedersen MJ, Palmgren MG (2003) Conserved Asp684 in tramsmebrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is a molecular determinant of proton translocation. J Biol Chem 278:17845–17851

    Article  CAS  PubMed  Google Scholar 

  • Buch-Pedersen MJ, Venema K, Serrano R, Palmgren MG (2000) Abolishment of proton pumping and and accumulation in the E1P conformational state of a plant plasma membrane H+ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6. J Biol Chem 275:39167–39173

  • Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Protons and how they are transported by proton pumps. Pflug Arch-Eur J Physiol 457:573–579

    Article  CAS  Google Scholar 

  • Bukrinsky JT, Buch-Pedersen MJ, Larsen S, Palmgren MG (2001) A putative binding site of plasma membrane H+ -ATPase identified through homology modeling. FEBS Lett 494:6–10

  • Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci USA 109:8121–8126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • del Val C, White SH, Bondar A-N (2012) Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics. J Membr Biol 245:717–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • del Val C, Bondar L, Bondar A-N (2014) Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014(186):95–111

    Article  Google Scholar 

  • Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG (2013) A conserved asparagine in a P-type proton pump is required for efficient gating of protons. J Biol Chem 288:9610–9618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Fagan MJ, Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence analysis and construction of phylogenetic trees. J Mol Evol 38:57–99

    Article  CAS  PubMed  Google Scholar 

  • Feller SE, MacKerell AD Jr (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: 1) Parameter optimization based on small molecule and consdensed phase macromolecular target data. J Comput Chem 21:86–104

    Article  CAS  Google Scholar 

  • Fraysse ÅS, Møller ALB, Poulsen LR, Wollenweber B, Buch-Pedersen MJ, Palmgren MG (2005) A systematic mutagenesis study of Ile-282 in transmembrane segment M4 of the plasma membrane H+-ATPase J Biol Chem 280:21785-21790

  • Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within a-helices and its relevance to membrane-bound proteins. J Mol Biol 175:75–81

    Article  CAS  PubMed  Google Scholar 

  • Grubmüller H, Heller H, Windermuth A, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142

    Article  Google Scholar 

  • Humphrey W, Dalke W, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kale L et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Chem 151:283–312

    CAS  Google Scholar 

  • Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nature Rev Mol Cell Biol 5:282–295

    Article  Google Scholar 

  • Kühlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism and regulation of the Neurospora plasma membrane H+ -ATPase. Science 297:1692–1696

  • Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and interpretation of protein pKa values. Proteins 61:704–721

    Article  CAS  PubMed  Google Scholar 

  • Li J, Shaikh SA, Enkavi G, Wen P-C, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci USA 110:7696–7701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Banavali N (2000) All-atom empirical force field for nucleic acids: 2) Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Feig M (2004) Brooks CL III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

  • MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular-dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim Biophys Acta 1469:133–157

  • Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+, K+-ATP-ase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70

    Article  CAS  PubMed  Google Scholar 

  • Olsson MHM, Sondergaard CR, Rostowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  • Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JB, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Presta LG, Rose GD (1988) Helix signals in proteins. Science 240:1632–1641

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the end of helices. Science 240:1648–1652

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints Molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Rev Basic Clin Gastroeneterol 134:1842–1860

    CAS  Google Scholar 

  • Sondergaard CR, Olsson MHM, Rostowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theor Comput 7:2284–2295

    Article  CAS  Google Scholar 

  • Tuckermann M, Berne BJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biomol Struct 28:319–365

    Article  CAS  Google Scholar 

  • Yatime L et al (2009) P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta 1787:207–220

Download references

Acknowledgments

This work was supported in part by the Marie Curie International Reintegration Award FP7-PEOPLE-2010-RG 276920 (to A-NB) and by an allocation of computing time from the North-German Supercomputing Alliance (HLRN bec00076). FG was supported in part by the DFG Collaborative Research Center SFB 1078 ‘Protonation dynamics in protein function’, Project C4 (to A-NB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Nicoleta Bondar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, F., Bondar, AN. Dynamics of the Plasma Membrane Proton Pump. J Membrane Biol 248, 443–453 (2015). https://doi.org/10.1007/s00232-014-9732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9732-2

Keywords

Navigation