Skip to main content

Advertisement

Log in

Influence of Pathogenic Mutations on the Energetics of Translocon-Mediated Bilayer Integration of Transmembrane Helices

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Aberrant protein folding and assembly contribute to a number of diseases, and efforts to rationalize how pathogenic mutations cause this phenomenon represent an important imperative in biochemical research. However, for α-helical membrane proteins, this task is complicated by the fact that membrane proteins require intricate machinery to achieve structural and functional maturity under cellular conditions. In this work, we utilized the ΔG predictor algorithm (www.dgpred.cbr.su.se) to survey 470 known pathogenic mutations occurring in five misfolding-prone α-helical membrane proteins for their predicted effects on the translocon-mediated membrane integration of transmembrane helices, a critical step in biosynthesis and folding of nascent membrane proteins. The results suggest that about 10 % of these mutations are likely to have adverse effects on the topogenesis of nascent membrane proteins. These results suggest that the misfolding of a modest but nonetheless significant subset of pathogenic variants may begin at the translocon. Potential implications for therapeutic design and personalized medicine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamian L, Liang J (2002) Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47:209–218

    Article  CAS  PubMed  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  • Buck TM, Skach WR (2005) Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J Biol Chem 280:261–269

    Article  CAS  PubMed  Google Scholar 

  • Cestèle S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M (2013) Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci USA 110:17546–17551

    Article  PubMed Central  PubMed  Google Scholar 

  • Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG (2014) The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 31:58–84

    Article  CAS  PubMed  Google Scholar 

  • Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77:401–412

    Article  CAS  PubMed  Google Scholar 

  • Garriga P, Liu X, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125–>Arg in the transmembrane helix C. Proc Natl Acad Sci USA 93:4560–4564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heinrich SU, Mothes W, Brunner J, Rapoport TA (2000) The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  CAS  PubMed  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hwa J, Garriga P, Liu X, Khorana HG (1997) Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc Natl Acad Sci USA 94:10571–10576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Illergard K, Kauko A, Elofsson A (2011) Why are polar residues within the membrane core evolutionary conserved? Proteins 79:79–91

    Article  PubMed  Google Scholar 

  • Kanki T, Sakaguchi M, Kitamura A, Sato T, Mihara K, Hamasaki N (2002) The tenth membrane region of band 3 is initially exposed to the luminal side of the endoplasmic reticulum and then integrated into a partially folded band 3 intermediate. Biochemistry 41:13973–13981

    Article  CAS  PubMed  Google Scholar 

  • Kanner EM, Klein IK, Friedlander M, Simon SM (2002) The amino terminus of opsin translocates “posttranslationally” as efficiently as cotranslationally. Biochemistry 41:7707–7715

    Article  CAS  PubMed  Google Scholar 

  • Kauko A, Hedin LE, Thebaud E, Cristobal S, Elofsson A, von Heijne G (2010) Repositioning of transmembrane alpha-helices during membrane protein folding. J Mol Biol 397:190–201

    Article  CAS  PubMed  Google Scholar 

  • Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128

    Article  CAS  PubMed  Google Scholar 

  • Kelly JW, Balch WE (2006) The integration of cell and chemical biology in protein folding. Nat Chem Biol 2:224–227

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Turnbull IR, Bragin A, Carveth K, Verkman AS, Skach WR (2000) Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol Biol Cell 11:2973–2985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meindl-Beinker NM, Lundin C, Nilsson I, White SH, von Heijne G (2006) Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly. EMBO Rep 7:1111–1116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moss K, Helm A, Lu Y, Bragin A, Skach WR (1998) Coupled translocation events generate topological heterogeneity at the endoplasmic reticulum membrane. Mol Biol Cell 9:2681–2697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR 3rd, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myers JK, Mobley CK, Sanders CR (2008) The peripheral neuropathy-linked Trembler and Trembler-J mutant forms of peripheral myelin protein 22 are folding-destabilized. Biochemistry 47:10620–10629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Öjemalm K, Higuchi T, Jiang Y, Langel Ü, Nilsson I, White SH, Suga H, von Heijne G (2011) Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci USA 108:E359–E364

    Article  PubMed Central  PubMed  Google Scholar 

  • Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol 9:444–454

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Kim JH, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR (2014) Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry 53:2032–2042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  CAS  PubMed  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Rowe SM, Verkman AS (2013) Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med 3:a009761

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders C, Myers J (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51

    Article  CAS  PubMed  Google Scholar 

  • Sanders CR, Ismail-Beigi F, McEnery MW (2001) Mutations of peripheral myelin protein 22 result in defective trafficking through mechanisms which may be common to diseases involving tetraspan membrane proteins. Biochemistry 40:9453–9459

    Article  CAS  PubMed  Google Scholar 

  • Sung CH, Schneider BG, Agarwal N, Papermaster DS, Nathans J (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44

    Article  PubMed  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106:18825–18830

    Article  PubMed Central  PubMed  Google Scholar 

  • Virkki MT, Agrawal N, Edsbacker E, Cristobal S, Elofsson A, Kauko A (2014) Folding of aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci (in press).

  • von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    Article  Google Scholar 

  • von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  Google Scholar 

  • Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  CAS  PubMed  Google Scholar 

  • White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42

    Article  CAS  PubMed  Google Scholar 

  • Wilson AJ, Quinn KV, Graves FM, Bitner-Glindzicz M, Tinker A (2005) Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1). Cardiovasc Res 67:476–486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by US NIH Grants RO1 DC007416, RO1 HL122010, and U54 GM094608. JPS was supported by US NIH F32 GM110929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Sanders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlebach, J.P., Sanders, C.R. Influence of Pathogenic Mutations on the Energetics of Translocon-Mediated Bilayer Integration of Transmembrane Helices. J Membrane Biol 248, 371–381 (2015). https://doi.org/10.1007/s00232-014-9726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9726-0

Keywords

Navigation