Skip to main content
Log in

Calcium Rapidly Down-Regulates Human Renal Epithelial Sodium Channels Via a W-7-Sensitive Mechanism

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Increases in intracellular calcium (Ca2+) inhibit renal sodium (Na+) absorption in cortical collecting ducts, but the precise mechanism is unclear. We, therefore, studied the effects of raising intracellular Ca2+ (using 10 µmol/L A23187, a Ca2+ ionophore) on wild-type and Liddle-mutated human epithelial Na+ channels (hENaC) expressed in Xenopus oocytes, using the dual-electrode voltage clamp technique. A23187 decreased amiloride-sensitive Na+ current by 55 % in oocytes expressing wild-type hENaC, an effect prevented by co-exposure to 50 μmol/L W-7 (to inhibit the Ca2+/calmodulin complex). By contrast, co-exposure to 50 μmol/L calphostin (to inhibit protein kinase C) or 5 μmol/L KN-62 (to inhibit Ca2+/calmodulin-dependent protein kinase II) had no effect on the decrease in amiloride-sensitive Na+ current elicited by A23187 alone. Whereas A23187 reduced amiloride-sensitive Na+ current in oocytes expressing wild-type hENaC, it had no similar effect in those expressing Liddle-mutated hENaCs, suggesting that the activity of individual Na+ channels in situ was unchanged by the rise in intracellular Ca2+. These data suggest that the A23187-induced rise in intracellular Ca2+ inhibited wild-type hENaC through a W-7-sensitive mechanism, which likely reflected enhanced removal of Na+ channels from the cell membrane by endocytosis. We, therefore, propose that Na+ absorption in cortical collecting duct cells is inhibited by Ca2+, possibly when complexed with calmodulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreil H, Loffing J, Rebhun JF et al (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673

    Article  Google Scholar 

  • Alli AA, Bao HF, Alli AA et al (2012) Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 303:F800–F811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Båtshake B, Nilsson C, Sundelin J (1995) Molecular characterization of the mouse prostanoid EP1 receptor gene. Eur J Biochem 231:809–814

    Article  PubMed  Google Scholar 

  • Blődow A, Ngezahayo A, Ernst A et al (2003) Calmodulin antagonists suppress gap junction coupling in isolated Hensen cells of the guinea pig cochlea. Pflüg Arch 446:36–41

    Google Scholar 

  • Boton R, Singer D, Dascal N (1990) Inactivation of calcium-activated chloride conductance in Xenopus oocytes: roles of calcium and protein kinase C. Pflüg Arch 416:1–6

    Article  CAS  Google Scholar 

  • Bourinet E, Fournier F, Nargeot J et al (1992) Endogenous Xenopus-oocyte Ca-channels are regulated by protein kinases A and C. FEBS Lett 299:5–9

    Article  CAS  PubMed  Google Scholar 

  • Breyer MD, Breyer RM (2000) Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol 279:F12–F23

    CAS  PubMed  Google Scholar 

  • Breyer M, Jacobson H, Breyer R (1996) Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 7:8–17

    CAS  PubMed  Google Scholar 

  • Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Article  CAS  PubMed  Google Scholar 

  • Doolan CM, Harvey BJ (1996) Rapid effects of steroid hormones on free intracellular calcium in T84 colonic epithelial cells. Am J Physiol Cell Physiol 271:C1935–C1941

    CAS  Google Scholar 

  • Farr TJ, Coddington-Lawson SJ, Snyder PM et al (2000) Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+ channel subunits. Biochem J 345:503–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frindt G, Palmer LG, Windhager EE (1996) Feedback regulation of Na channels in rat CCT. IV. Mediation by activation of protein kinase C. Am J Physiol Renal Fluid Electrolyte Physiol 270:F371–F376

    CAS  Google Scholar 

  • Funk C, Furchi L, FitzGerald G et al (1993) Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J Biol Chem 268:26767–26772

    CAS  PubMed  Google Scholar 

  • Goulet CC, Volk KA, Adams CM et al (1998) Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle’s syndrome. J Biol Chem 273:30012–30017

    Article  CAS  PubMed  Google Scholar 

  • Hartwig JH, Thelen M, Rosen A et al (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium/calmodulin. Nature 356:618–622

    Article  CAS  PubMed  Google Scholar 

  • Hartzell HC, Rinderknecht A (1996) Calphostin C, a widely used protein kinase C inhibitor, directly and potently blocks L-type Ca channels. Am J Physiol Cell Physiol 270:C1293–C1299

    CAS  Google Scholar 

  • Harvey BJ, Higgins M (2000) Nongenomic effects of aldosterone on Ca2+ in M-1 cortical collecting duct cells. Kidney Int 57:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Hébert RL, Jacobson HR, Breyer MD (1991) Prostaglandin E2 inhibits sodium transport in rabbit cortical collecting duct by increasing intracellular calcium. J Clin Invest 87:1992–1998

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Marunaka Y, Rotin D (1998) Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J Gen Physiol 111:825–846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ling BN, Kokko KE, Eaton DC (1992) Inhibition of apical Na+ channels in rabbit cortical collecting tubules by basolateral prostaglandin E2 is modulated by protein kinase C. J Clin Invest 90:1328–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lott JS, Coddington-Lawson SJ, Teedale-Spittle PH et al (2002) A single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel. Biochem J 361:481–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masson M, Spezzatti B, Chapman J et al (1992) Calmodulin antagonists chlorpromazine and W-7 inhibit exogenous cholesterol esterification and sphingomyelinase activity in human skin fibroblast cultures. Similarities between drug-induced Niemann-Pick type C lipidoses. J Neurosci Res 31:844–888

    Article  Google Scholar 

  • Means AR, Van Berkum MF, Bagchi et al (1991) Regulatory functions of calmodulin. Pharmacol Ther 50:255–270

    Article  CAS  PubMed  Google Scholar 

  • Miledi R, Parker I (1984) Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol 357:173–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miledi R, Parker I, Woodward RM (1989) Membrane currents elicited by divalent cations in Xenopus oocytes. J Physiol 417:173–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okazaki K, Ishikawa T, Inui M et al (1994) KN-62, a specific Ca++/calmodulin-dependent protein kinase inhibitor, reversibly depresses the rate of beating of cultured fetal mouse and cardiac myocytes. J Pharmacol Exp Ther 270:1319–1324

    CAS  PubMed  Google Scholar 

  • Palmer LG, Frindt G (1987) Effects of cell Ca and pH on Na channels from the rat cortical collecting duct. Am J Physiol Renal Physiol 253:F333–F339

    CAS  Google Scholar 

  • Plant PJ, Yeger H, Staub O et al (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272:32329–32336

    Article  CAS  PubMed  Google Scholar 

  • Rothstein A, Mack E (1992) Volume-activated calcium uptake: its role in cell volume regulation of Madin–Darby canine kidney cells. Am J Physiol Cell Physiol 262:C339–C347

    CAS  Google Scholar 

  • Sengupta P, Ruano MJ, Tebar F et al (2007) Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential. Dual effect of W-13 on epidermal growth factor receptor activation. J Biol Chem 282:8474–8486

    Article  CAS  PubMed  Google Scholar 

  • Shimkets RA, Warnock DG, Bositis CM et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the β-subunit of the epithelial sodium channel. Cell 79:407–414

    Article  CAS  PubMed  Google Scholar 

  • Staub O, Dho S, Henry PC et al (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Staub O, Abriel H, Plant P et al (2000) Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57:809–815

    Article  CAS  PubMed  Google Scholar 

  • Stokes JB, Kokko JP (1977) Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J Clin Invest 59:1099–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas AP, Bird GS, Hajnόczky G et al (1996) Spatial and temporal aspects of cellular calcium signalling. FASEB J 10:1505–1517

    CAS  PubMed  Google Scholar 

  • Toh H, Ichikawa A, Narumiya S (1995) Molecular evolution of receptors for eicosanoids. FEBS Lett 361:17–21

    Article  CAS  PubMed  Google Scholar 

  • Tohda M, Nakamua J, Hidaka H et al (1991) Inhibitory effects of KN-62, a specific inhibitor of Ca/calmodulin-dependent protein kinase II, on serotonin-evoked Cl current and 36Cl efflux in Xenopus oocytes. Neurosci Lett 129:47–50

    Article  CAS  PubMed  Google Scholar 

  • Tokuda S, Niisato N, Morisaki S et al (2002) Calmodulin-dependent regulation of hypotonicity-induced translocation of ENaC in renal epithelial A6 cells. Biochem Biophys Res Comm 298:619–623

    Article  CAS  PubMed  Google Scholar 

  • Watabe A, Sugimoto Y, Irie A et al (1993) Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem 268:20175–20178

    CAS  PubMed  Google Scholar 

  • Weber WM, Liebold KM, Reifarth FW et al (1995) The Ca2+-induced leak current in Xenopus oocytes is indeed mediated through a Cl channel. J Membr Biol 148:263–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a project grant from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey I. Sandle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robins, G.G., Sandle, G.I. Calcium Rapidly Down-Regulates Human Renal Epithelial Sodium Channels Via a W-7-Sensitive Mechanism. J Membrane Biol 247, 729–737 (2014). https://doi.org/10.1007/s00232-014-9698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9698-0

Keywords

Navigation