Skip to main content
Log in

Phosphoinositide 3-Kinase Pathway Mediates Early Aldosterone Action on Morphology and Epithelial Sodium Channel in Mammalian Renal Epithelia

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Involvement of phosphoinositide 3-kinases (PI3Ks) in early aldosterone action on epithelial sodium channel (ENaC) in mammalian renal epithelia was investigated by hopping probe ion conductance microscopy combined with patch-clamping in this study. Aldosterone treatment enlarged the cell volume and elevated the apical membrane of renal mpkCCDc14 epithelia, which resulted in enhancing the open probability of ENaC. Inhibition of PI3K pathway by LY294002 obviously suppressed these aldosterone-induced changes in both cell morphology and ENaC activity. These results indicated the important role of PI3K pathway in early aldosterone action and the close relationship between cell morphology and ENaC activity in mammalian renal epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 21:2389–2399

    Article  CAS  PubMed  Google Scholar 

  • Awayda MS, Subramanyam M (1998) Regulation of the epithelial Na+ channel by membrane tension. J Gen Physiol 112:97–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bens M, Vallet V, Cluzeaud F, Pascual-Letallec L, Kahn A, Rafestin-Oblin ME, Rossier BC, Vandewalle A (1999) Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J Am Soc Nephrol 10:923–934

    CAS  PubMed  Google Scholar 

  • Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710

    Article  CAS  PubMed  Google Scholar 

  • Blazer-Yost BL, Päunescu TG, Helman S, Lee KD, Vlahos CJ (1999) Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption. Am J Physiol 277:C531–C536

    CAS  PubMed  Google Scholar 

  • Cantiello HF (1995) Role of the actin cytoskeleton on epithelial Na+ channel regulation. Kidney Int 48:970–984

    Article  CAS  PubMed  Google Scholar 

  • Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Wang Y, Sesaki H, Iijima M (2012) Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 5:ra10

    PubMed Central  PubMed  Google Scholar 

  • Chen X, Zhu H, Liu X, Lu H, Li Y, Wang J, Liu H, Zhang J, Ma Q, Zhang Y (2013) Characterization of two mammalian cortical collecting duct cell lines with hopping probe ion conductance microscopy. J Membr Biol 246:7–11

    Article  CAS  PubMed  Google Scholar 

  • Dooley R, Harvey BJ, Thomas W (2012) Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 350:223–234

    Article  CAS  PubMed  Google Scholar 

  • Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G (2001) Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol 184:313–319

    Article  CAS  PubMed  Google Scholar 

  • Fronius M, Clauss WG (2008) Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflug Arch 455:775–785

    Article  CAS  Google Scholar 

  • Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396

    CAS  PubMed  Google Scholar 

  • Gorelik J, Zhang Y, Sánchez D, Shevchuk A, Frolenkov G, Lab M, Klenerman D, Edwards C, Korchev Y (2005) Aldosterone acts via an ATP autocrine/paracrine system: the Edelman ATP hypothesis revisited. Proc Natl Acad Sci USA 102:15000–15005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helms MN, Liu L, Liang YY, Al-Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP (2005) Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma-ENaC. J Biol Chem 280:40885–40891

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kemendy AE, Kleyman TR, Eaton DC (1992) Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am J Physiol 263:C825–C837

    CAS  PubMed  Google Scholar 

  • Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys J 78:451–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma HP (2011) Hydrogen peroxide stimulates the epithelial sodium channel through a phosphatidylinositide 3-kinase-dependent pathway. J Biol Chem 286:32444–32453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma HP, Saxena S, Warnock DG (2001) Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277:7641–7644

    Article  Google Scholar 

  • May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J Am Soc Nephrol 8:1813–1822

    CAS  PubMed  Google Scholar 

  • Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer LG, Patel A, Frindt G (2012) Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 16:35–43

    Article  CAS  PubMed  Google Scholar 

  • Paunescu TG, Blazer-Yost BL, Vlahos CJ, Helman SI (2000) LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia. Am J Physiol Cell Physiol 279:C236–C247

    CAS  PubMed  Google Scholar 

  • Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD (2005) Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 280:37565–37571

    Article  CAS  PubMed  Google Scholar 

  • Pochynyuk O, Bugaj V, Stockand JD (2008) Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17:533–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Record RD, Froelich LL, Vlahos CJ, Blazer-Yost BL (1998) Phosphatidylinositol 3-kinase activation is required for insulin-stimulated sodium transport in A6 cells. Am J Physiol 274:E611–E617

    CAS  PubMed  Google Scholar 

  • Rossier BC (2003) The epithelial sodium channel (ENaC): new insights into ENaC gating. Pflug Arch 446:314–316

    CAS  Google Scholar 

  • Rozansky DJ, Wang J, Doan N, Purdy T, Faulk T, Bhargava A, Dawson K, Pearce D (2002) Hypotonic induction of SGK1 and Na+ transport in A6 cells. Am J Physiol Renal Physiol 283:F105–F113

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD (2004) Ras activates the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling. J Biol Chem 279:37771–37778

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD (2007) Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18:1652–1661

    Article  CAS  PubMed  Google Scholar 

  • Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD (2004) Direct activation of the epithelial Na+ channel by phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J Biol Chem 279:22654–22663

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Knight ZA, Fiedler D, Williams O, Shokat KM, Pearce D (2008) Activity of the p110-subunit of phosphatidylinositol-3-kinase is required for activation of epithelial sodium transport. Am J Physiol Renal Physiol 295:F843–F850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Liu X, Zhang X, Lu H, Zhang J, Zhang Y (2011) Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined hopping probe ion conductance microscopy and patch-clamp technique. Ultramicroscopy 111:1417–1422

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Liu X, Lu H, Zhang X, Ma L, Gao R, Zhang Y (2012) Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with hopping probe ion conductance microscopy. Chem Res Toxicol 25:297–304

    Article  PubMed  Google Scholar 

  • Zhang Y, Gorelik J, Sanchez D, Shevchuk A, Lab M, Vodyanoy I, Klenerman D, Edwards C, Korchev Y (2005) Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity. Kidney Int 68:1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sanchez D, Gorelik J, Klenerman D, Lab M, Edwards C, Korchev Y (2007) Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia. Am J Physiol Renal Physiol 292:F1734–F1740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.30971184; 81271361; 81330029; 31300828), the International Science & Technology Cooperation Program of China (No.2011DFG33430), and Tianjin Natural Science Foundation of China (No.13JCYBJC21900; 12JCYBJC31500).

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianning Zhang, Qiang Ma or Yanjun Zhang.

Additional information

Yuan Zhou and Xuewei Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Chen, X., Liu, X. et al. Phosphoinositide 3-Kinase Pathway Mediates Early Aldosterone Action on Morphology and Epithelial Sodium Channel in Mammalian Renal Epithelia. J Membrane Biol 247, 461–468 (2014). https://doi.org/10.1007/s00232-014-9647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9647-y

Keywords

Navigation