Abstract
Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.
Similar content being viewed by others
References
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041
Behnke MS, Khan A, Wootton JC, Dubey JP, Tang K, Sibley LD (2011) Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc Natl Acad Sci USA 108(23):9631–9636
Bennett WD, Tieleman DP (2011) Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J Chem Theory Comput 7(9):2981–2988
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684. doi:10.1063/1.448118
Bond PJ, Wee CL, Sansom MS (2008) Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry 47(43):11321–11331
Budin I, Szostak JW (2011) Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA 108(13):5249–5254
Callenberg KM, Choudhary OP, Gabriel L, Gohara DW, Baker NA, Grabe M (2010) APBSmem: a graphical interface for electrostatic calculations at the membrane. PloS ONE 5(9):e12722
Callenberg KM, Latorraca NR, Grabe M (2012) Membrane bending is critical for the stability of voltage sensor segments in the membrane. J Gen Physiol 140(1):55–68. doi:10.1085/jgp.201110766
Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339
Choe S, Hecht KA, Grabe M (2008) A continuum method for determining membrane protein insertion energies and the problem of charged residues. J Gen Physiol 131(6):563–573. doi:10.1085/jgp.200809959
de Gennes P (1969) Conjectures sur l’etat smectique. J Phys Colloq 30(C4):C4–C65
Dilger JP, McLaughlin S, McIntosh TJ, Simon SA et al (1979) The dielectric constant of phospholipid bilayers and the permeability of membranes to ions. Science 206(4423):1196
Dorairaj S, Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104(12):4943–4948. doi:10.1073/pnas.0610470104
El Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF (2007) Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cell Microbiol 9(1):54–64
Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. Wiley–Interscience, New York
Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76(2):937–945
Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch Teil C Biochem Biophys Biol Virol 28(11):693
Helm C, Möhwald H, Kjaer K, Als-Nielsen J (1987) Phospholipid monolayer density distribution perpendicular to the water surface. A synchrotron X-ray reflectivity study. Europhys Lett 4(6):697
Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q
Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White S, Von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433(7024):377–381. doi:10.1038/nature03216
Hu Y, Ou S, Patel S (2013) Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions. J Phys Chem B 117(39):11641–11653. doi:10.1021/jp404829y
Hub JS, Groot BLD, Spoel DVD (2010) g\_wham: a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi:10.1016/0263-7855(96)00018-5
Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901
Khavrutskii IV, Gorfe AA, Lu B, McCammon JA (2009) Free energy for the permeation of Na(+) and Cl(−) ions and their ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic Fourier beads. J Am Chem Soc 131(5):1706–1716. doi: 10.1021/ja8081704
Kim T, Lee KI, Morris P, Pastor RW, Andersen OS, Im W (2012) Influence of hydrophobic mismatch on structures and dynamics of gramicidin A and lipid bilayers. Biophys J 102(7):1551–1560
Knecht V, Klasczyk B (2013) Specific binding of chloride ions to lipid vesicles and implications at molecular scale. Biophys J 104(4):818–824
Kumar S, Bouzida D, Swendsen R, Kollman P, Rosenberg J (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. J Comput Chem 13(8):1011–1021
Leontiadou H, Mark AE, Marrink SJ (2007) Ion transport across transmembrane pores. Biophys J 92(12):4209–4215. doi:10.1529/biophysj.106.101295
Leung SS, Mijalkovic J, Borrelli K, Jacobson MP (2012) Testing physical models of passive membrane permeation. J Chem Inf Model 52(6):1621–1636
Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211–217
Li LB, Vorobyov I, Allen TW (1818) The role of membrane thickness in charged protein–lipid interactions. Biochim Biophys Acta Biomembr 1818(2):135–145. doi:10.1016/j.bbamem.2011.10.026
MacCallum JL, Bennett WFD, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129(5):371–377. doi:10.1085/jgp.200709745
Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105(36):13351–13355
Marrink SJ, Tieleman DP (2013) Perspective on the MARTINI model. Chem Soc Rev 42:6801–6822
Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788(1):149–168
Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636
Mondal S, Khelashvili G, Shan J, Andersen OS, Weinstein H (2011) Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. Biophys J 101(9):2092–2101
Pandit SA, Bostick D, Berkowitz ML (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84(6):3743
Parsegian A (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221(5183):844
Paula S, Volkov A, Van Hoek A, Haines T, Deamer D (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70(1):339–348
Paula S, Volkov A, Deamer D (1998) Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J 74(1):319–327. doi:10.1016/S0006-3495(98)77789-6
Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):155–162. doi:10.1093/comjnl/7.2.155
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339. doi:10.1016/S0006-3495(00)76295-3
Reese ML, Boothroyd JC (2009) A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole. Traffic 10(10):1458–1470
Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci USA 108(23):9625–9630
Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP (2006a) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc 128(43):14073–14080
Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006b) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128(8):2510–2511
Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767
Shrake A, Rupley J (1973) Environment and exposure to solvent of protein atoms, lysozyme and insulin. J Mol Biol 79(2):351–371
Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988
Vepper H, Voth G (2006) Mechanisms of passive ion permeation through lipid bilayers: insights from simulation. J Phys Chem B 110(42):21327–21337
Tieleman DP, Marrink SJ (2006) Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J Am Chem Soc 128(38):12462–12467
Vorobyov I, Bekker B, Allen TW (2010) Electrostatics of deformable lipid membranes. Biophys J 98(12):2904–2913
Wang L, Bose PS, Sigworth FJ (2006) Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci USA 103(49):18528–18533
Wee CL, Chetwynd A, Sansom MS (2011) Membrane insertion of a voltage sensor helix. Biophys J 100(2):410
Woolf TB (2013) A tale of two ions and their membrane interactions: clearly the same or clearly different? Biophys J 104(4):746–747
Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6):e1000810. doi:10.1371/journal.pcbi.1000810
Yoo J, Jackson MB, Cui Q (2013) A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores. Biophys J 104(4):841–852
Zimmerberg J, Kozlov MM (2005) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19
Acknowledgments
We would like to thank Nwamaka Onyeozili, Siyu Xiao, Mary Krawczak, and Shuchang Liu for their assistance in setting up and running initial variations of the coarse-grained MD simulations. We also thank Frank Marcoline for help implementing the dipole potential, and John Rosenberg, Daniel Zuckerman, Patrick Van der Wel, Joshua Adelman and Charles Wolgemuth for enlightening discussions. Naomi R. Latorraca was supported by an Undergraduate Research Fellowship from the Howard Hughes Medical Institute, and this work was supported by an NSF CAREER Award (MCB-0722724) to Michael Grabe and a Pew Scholarship in the Biomedical Sciences to Jon P. Boyle. We dedicate this work to Harold Lecar, a deep scholar, incredible teacher and good friend.
Author information
Authors and Affiliations
Corresponding author
Additional information
Naomi R. Latorraca and Keith M. Callenberg have contributed equally to this work.
Rights and permissions
About this article
Cite this article
Latorraca, N.R., Callenberg, K.M., Boyle, J.P. et al. Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane. J Membrane Biol 247, 395–408 (2014). https://doi.org/10.1007/s00232-014-9646-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00232-014-9646-z