Skip to main content
Log in

Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behnke MS, Khan A, Wootton JC, Dubey JP, Tang K, Sibley LD (2011) Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc Natl Acad Sci USA 108(23):9631–9636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett WD, Tieleman DP (2011) Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J Chem Theory Comput 7(9):2981–2988

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  • Bond PJ, Wee CL, Sansom MS (2008) Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry 47(43):11321–11331

    Article  CAS  PubMed  Google Scholar 

  • Budin I, Szostak JW (2011) Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA 108(13):5249–5254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callenberg KM, Choudhary OP, Gabriel L, Gohara DW, Baker NA, Grabe M (2010) APBSmem: a graphical interface for electrostatic calculations at the membrane. PloS ONE 5(9):e12722

    Article  PubMed Central  PubMed  Google Scholar 

  • Callenberg KM, Latorraca NR, Grabe M (2012) Membrane bending is critical for the stability of voltage sensor segments in the membrane. J Gen Physiol 140(1):55–68. doi:10.1085/jgp.201110766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Hecht KA, Grabe M (2008) A continuum method for determining membrane protein insertion energies and the problem of charged residues. J Gen Physiol 131(6):563–573. doi:10.1085/jgp.200809959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Gennes P (1969) Conjectures sur l’etat smectique. J Phys Colloq 30(C4):C4–C65

    Article  Google Scholar 

  • Dilger JP, McLaughlin S, McIntosh TJ, Simon SA et al (1979) The dielectric constant of phospholipid bilayers and the permeability of membranes to ions. Science 206(4423):1196

    Article  CAS  PubMed  Google Scholar 

  • Dorairaj S, Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104(12):4943–4948. doi:10.1073/pnas.0610470104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF (2007) Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cell Microbiol 9(1):54–64

    Article  PubMed  Google Scholar 

  • Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. Wiley–Interscience, New York

    Google Scholar 

  • Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76(2):937–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch Teil C Biochem Biophys Biol Virol 28(11):693

    CAS  Google Scholar 

  • Helm C, Möhwald H, Kjaer K, Als-Nielsen J (1987) Phospholipid monolayer density distribution perpendicular to the water surface. A synchrotron X-ray reflectivity study. Europhys Lett 4(6):697

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White S, Von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433(7024):377–381. doi:10.1038/nature03216

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Ou S, Patel S (2013) Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions. J Phys Chem B 117(39):11641–11653. doi:10.1021/jp404829y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hub JS, Groot BLD, Spoel DVD (2010) g\_wham: a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901

    Article  PubMed  Google Scholar 

  • Khavrutskii IV, Gorfe AA, Lu B, McCammon JA (2009) Free energy for the permeation of Na(+) and Cl(−) ions and their ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic Fourier beads. J Am Chem Soc 131(5):1706–1716. doi: 10.1021/ja8081704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim T, Lee KI, Morris P, Pastor RW, Andersen OS, Im W (2012) Influence of hydrophobic mismatch on structures and dynamics of gramicidin A and lipid bilayers. Biophys J 102(7):1551–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knecht V, Klasczyk B (2013) Specific binding of chloride ions to lipid vesicles and implications at molecular scale. Biophys J 104(4):818–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Bouzida D, Swendsen R, Kollman P, Rosenberg J (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2007) Ion transport across transmembrane pores. Biophys J 92(12):4209–4215. doi:10.1529/biophysj.106.101295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung SS, Mijalkovic J, Borrelli K, Jacobson MP (2012) Testing physical models of passive membrane permeation. J Chem Inf Model 52(6):1621–1636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Li LB, Vorobyov I, Allen TW (1818) The role of membrane thickness in charged protein–lipid interactions. Biochim Biophys Acta Biomembr 1818(2):135–145. doi:10.1016/j.bbamem.2011.10.026

    Article  Google Scholar 

  • MacCallum JL, Bennett WFD, Tieleman DP (2007) Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. J Gen Physiol 129(5):371–377. doi:10.1085/jgp.200709745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105(36):13351–13355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marrink SJ, Tieleman DP (2013) Perspective on the MARTINI model. Chem Soc Rev 42:6801–6822

    Google Scholar 

  • Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788(1):149–168

    Article  CAS  Google Scholar 

  • Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mondal S, Khelashvili G, Shan J, Andersen OS, Weinstein H (2011) Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. Biophys J 101(9):2092–2101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandit SA, Bostick D, Berkowitz ML (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84(6):3743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsegian A (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221(5183):844

    Article  CAS  PubMed  Google Scholar 

  • Paula S, Volkov A, Van Hoek A, Haines T, Deamer D (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70(1):339–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paula S, Volkov A, Deamer D (1998) Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J 74(1):319–327. doi:10.1016/S0006-3495(98)77789-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):155–162. doi:10.1093/comjnl/7.2.155

    Article  Google Scholar 

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339. doi:10.1016/S0006-3495(00)76295-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reese ML, Boothroyd JC (2009) A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole. Traffic 10(10):1458–1470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP (2011) Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci USA 108(23):9625–9630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP (2006a) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc 128(43):14073–14080

    Article  CAS  PubMed  Google Scholar 

  • Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006b) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128(8):2510–2511

    Article  CAS  PubMed  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767

    Article  Google Scholar 

  • Shrake A, Rupley J (1973) Environment and exposure to solvent of protein atoms, lysozyme and insulin. J Mol Biol 79(2):351–371

    Article  CAS  PubMed  Google Scholar 

  • Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988

    Article  CAS  Google Scholar 

  • Vepper H, Voth G (2006) Mechanisms of passive ion permeation through lipid bilayers: insights from simulation. J Phys Chem B 110(42):21327–21337

    Article  Google Scholar 

  • Tieleman DP, Marrink SJ (2006) Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J Am Chem Soc 128(38):12462–12467

    Article  CAS  PubMed  Google Scholar 

  • Vorobyov I, Bekker B, Allen TW (2010) Electrostatics of deformable lipid membranes. Biophys J 98(12):2904–2913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Bose PS, Sigworth FJ (2006) Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci USA 103(49):18528–18533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wee CL, Chetwynd A, Sansom MS (2011) Membrane insertion of a voltage sensor helix. Biophys J 100(2):410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woolf TB (2013) A tale of two ions and their membrane interactions: clearly the same or clearly different? Biophys J 104(4):746–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6):e1000810. doi:10.1371/journal.pcbi.1000810

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoo J, Jackson MB, Cui Q (2013) A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores. Biophys J 104(4):841–852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerberg J, Kozlov MM (2005) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nwamaka Onyeozili, Siyu Xiao, Mary Krawczak, and Shuchang Liu for their assistance in setting up and running initial variations of the coarse-grained MD simulations. We also thank Frank Marcoline for help implementing the dipole potential, and John Rosenberg, Daniel Zuckerman, Patrick Van der Wel, Joshua Adelman and Charles Wolgemuth for enlightening discussions. Naomi R. Latorraca was supported by an Undergraduate Research Fellowship from the Howard Hughes Medical Institute, and this work was supported by an NSF CAREER Award (MCB-0722724) to Michael Grabe and a Pew Scholarship in the Biomedical Sciences to Jon P. Boyle. We dedicate this work to Harold Lecar, a deep scholar, incredible teacher and good friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grabe.

Additional information

Naomi R. Latorraca and Keith M. Callenberg have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorraca, N.R., Callenberg, K.M., Boyle, J.P. et al. Continuum Approaches to Understanding Ion and Peptide Interactions with the Membrane. J Membrane Biol 247, 395–408 (2014). https://doi.org/10.1007/s00232-014-9646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9646-z

Keywords

Navigation