Skip to main content

Advertisement

Log in

Effect of Prediabetes on Membrane Bicarbonate Transporters in Testis and Epididymis

  • Brief Communication
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The formation of competent spermatozoa is a complex event that depends on the establishment of adequate environments throughout the male reproductive tract. This includes the control of bicarbonate (HCO3 ) concentration, which plays an essential role in the maintenance of extracellular and intracellular pH (pHi) values. Diabetes mellitus alters pHi regulation in mammalian cells, mainly by altering the activity of ion transporters, particularly HCO3 -dependent mechanisms. Yet, little is known about the effects of this pathology and its prodromal stage, prediabetes, on the membrane transport mechanisms of male reproductive tract cells. Herein, we analyzed protein and mRNA levels of the most relevant HCO3 transporters of the SLC4 family [anion exchanger 2 (AE2), Na+-driven Cl/HCO3 exchanger (NDCBE), electrogenic Na+/HCO3 cotransporter 1 (NBCe1), electroneutral Na+/HCO3 cotransporter 1 (NBCn1)] in the testis and epididymis of a prediabetic animal model. Firstly, we identified the HCO3 transporters of the SLC4 family, in both testicular and epididymal tissue. Secondly, although no alterations were detected in protein expression, mRNA levels of NBCe1, NBCn1 and NDCBE were significantly increased in the testis of prediabetic rats. On the other hand, in the epididymis, prediabetes caused an increase of AE2 and a decrease of NDCBE protein levels. These alterations may be translated into changes of HCO3 transepithelial epididymal fluxes in vivo, which may represent a threat for sperm survival. Moreover, these results provide evidence of the molecular mechanism that may be responsible for the significant increase in abnormal sperm morphology already reported in prediabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

AE2:

Anion exchanger 2

BTB:

Blood–testis barrier

DM:

Diabetes mellitus

HED:

High energy diet

NBCe1:

Electrogenic Na+/HCO3 cotransporters

NBCn1:

Electroneutral Na+/HCO3 cotansporters

NDCBE:

Na+ driven Cl/HCO3 exchanger

pHi :

Intracellular pH

qPCR:

Real-time PCR

SLC4:

Solute carrier 4

STF:

Seminiferous tubular fluid

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

References

  • Alper SL (2006) Molecular physiology of SLC4 anion exchangers. Exp Physiol 91:153–161

    Article  CAS  PubMed  Google Scholar 

  • Alves MG, Machado NG, Sardao VA, Carvalho RA, Oliveira PJ (2011) Anti-apoptotic protection afforded by cardioplegic celsior and histidine buffer solutions to hearts subjected to ischemia and ischemia/reperfusion. J Cell Biochem 112:3872–3881

    Article  CAS  PubMed  Google Scholar 

  • Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF (2013) Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochem Biophys Acta 1832(5):626–635

    CAS  PubMed  Google Scholar 

  • Bernardino RL, Jesus TT, Martins AD, Sousa M, Barros A, Cavaco JE, Socorro S, Alves MG, Oliveira PF (2013) Molecular basis of bicarbonate membrane transport in the male reproductive tract. Curr Med Chem 20(32):4037–4049

    Article  CAS  PubMed  Google Scholar 

  • Boron WF (2001) Sodium-coupled bicarbonate transporters. JOP 2:176–181

    CAS  PubMed  Google Scholar 

  • Boron WF (2004) Regulation of intracellular pH. Adv Physiol Educ 28:160–179

    Article  PubMed  Google Scholar 

  • Boron WF, Chen L, Parker MD (2009) Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol 212:1697–1706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breton S, Smith PJS, Lui B, Brown D (1996) Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat Med 2:470–472

    Article  CAS  PubMed  Google Scholar 

  • Caflisch CR, DuBose T (1990) Direct evaluation of acidification by rat testis and epididymis: role of carbonic anhydrase. Am J Physiol Endocrinol Metab 258:E143–E150

    CAS  Google Scholar 

  • Engelgau MM, Narayan K, Herman WH (2000) Screening for type 2 diabetes. Diabetes Care 23:1563–1580

    Article  CAS  PubMed  Google Scholar 

  • Feuvray D (1997) The regulation of intracellular pH in the diabetic myocardium. Cardiovasc Res 34:48–54

    Article  CAS  PubMed  Google Scholar 

  • Foley GL (2001) Overview of male reproductive pathology. Toxicol Pathol 29:49–63

    Article  CAS  PubMed  Google Scholar 

  • Grichtchenko II, Choi I, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl HCO3 exchanger. J Biol Chem 276:8358–8363

    Article  CAS  PubMed  Google Scholar 

  • Holappa K, Mustonen M, Parvinen M, Vihko P, Rajaniemi H, Kellokumpu S (1999) Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis. Biol Reprod 61:981–986

    Article  CAS  PubMed  Google Scholar 

  • Hollams EM, Giles KM, Thomson AM, Leedman PJ (2002) mRNA stability and the control of gene expression: implications for human disease. Neurochem Res 27:957–980

    Article  CAS  PubMed  Google Scholar 

  • Jegou B, Le Gac F, De Kretser D (1982) Seminiferous tubule fluid and interstitial fluid production. I. Effects of age and hormonal regulation in immature rats. Biol Reprod 27:590–595

    Article  CAS  PubMed  Google Scholar 

  • Jensen LJ, Schmitt BM, Berger UV, Nsumu NN, Boron WF, Hediger MA, Brown D, Breton S (1999a) Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol Reprod 60:573–579

    Article  CAS  PubMed  Google Scholar 

  • Jensen LJ, Stuart-Tilley AK, Peters LL, Lux SE, Alper SL, Breton S (1999b) Immunolocalization of AE2 anion exchanger in rat and mouse epididymis. Biol Reprod 61:973–980

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Lorton SP, Bavister BD (1995) Measurement of intracellular pH in mammalian sperm cells under physiological conditions. Cytometry 19:235–242

    Article  CAS  PubMed  Google Scholar 

  • Khandoudi N, Bernard M, Cozzone P, Feuvray D (1995) Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 44:196–202

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu JY, Wang DK, Wang L, Chen LM (2011) Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 98:112–119

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang DK, Chen LM (2012) The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 86:99

    Article  PubMed  Google Scholar 

  • Lutz W (2006) Fertility rates and future population trends: will Europe’s birth rate recover or continue to decline? Int J Androl 29:25–33

    Article  PubMed  Google Scholar 

  • Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Medina JF, Recalde S, Prieto J, Lecanda J, Sáez E, Funk CD, Vecino P, Van Roon MA, Ottenhoff R, Bosma PJ (2003) Anion exchanger 2 is essential for spermiogenesis in mice. Proc Natl Acad Sci USA 100:15847–15852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira PF, Sousa M, Barros A, Moura T, da Costa AR (2009a) Intracellular pH regulation in human sertoli cells: role of membrane transporters. Reproduction 137:353–359

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PF, Sousa M, Barros A, Moura T, Rebelo da Costa A (2009b) Membrane transporters and cytoplasmatic pH regulation on bovine sertoli cells. J Membr Biol 227:49–55

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Soler N, Piétrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20:417–428

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45

    Article  Google Scholar 

  • Pushkin A, Clark I, Kwon T, Nielsen S, Kurtz I (2000) Immunolocalization of NBC3 and NHE3 in the rat epididymis: colocalization of NBC3 and the vacuolar H+-ATPase. J Androl 21:708

    CAS  PubMed  Google Scholar 

  • Rato L, Socorro S, Cavaco JE, Oliveira PF (2010) Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in sertoli cells. J Membr Biol 236:215–224

    Article  CAS  PubMed  Google Scholar 

  • Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, Oliveira PF (2013) High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology 1:495–504

    Article  CAS  PubMed  Google Scholar 

  • Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, Reaven G (2000) A new rat model of type 2 diabetes: the fad-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Robaire B, Hinton BT, Orgebin-Crist M-C (2006) The epididymis. Physiol Reprod 1:1071–1148

    Google Scholar 

  • Rodriguez-Martinez H, Ekstedt E, Einarsson S (1990) Acidification of epididymal fluid in the boar. Int J Androl 13:238–243

    Article  CAS  PubMed  Google Scholar 

  • Russell JM, Boron WF (1976) Role of chloride transport in regulation of intracellular pH. Nature 264:73–74

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28:1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Vaz CV, Alves MG, Marques R, Moreira PI, Oliveira PF, Maia C, Socorro S (2012) Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int J Biochem Cell Biol 44:2077–2084

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) Diabetes: the cost of diabetes. Fact sheet 236. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (PTDC/QUI-BIQ/121446/2010 and PEst-C/SAU/UI0709/2011), cofunded by Fundo Europeu de Desenvolvimento Regional via Programa Operacional Factores de Competitividade. M. G. A. (SFRH/BPD/80451/2011) was funded by the FCT. P. F. O. was funded by the FCT through FSE and POPH funds (Programa Ciência 2008).

Conflict of interest

The authors confirm that this article has no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro F. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardino, R.L., Martins, A.D., Socorro, S. et al. Effect of Prediabetes on Membrane Bicarbonate Transporters in Testis and Epididymis. J Membrane Biol 246, 877–883 (2013). https://doi.org/10.1007/s00232-013-9601-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9601-4

Keywords

Navigation