Skip to main content
Log in

Surface Charges of the Membrane Crucially Affect Regulation of Na,K-ATPase by Phospholemman (FXYD1)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The human α1/His101 isoform of Na,K-ATPase has been reconstituted as a complex with and without FXYD1 into proteoliposomes of various lipid compositions in order to study the effect of the regulatory subunit on the half-saturating Na+ concentration (K 1/2) of Na+ ions for activation of the ion pump. It has been shown that the fraction of negatively charged lipid in the bilayer crucially affects the regulatory properties. At low concentrations of the negatively charged lipid DOPS (<10 %), FXYD1 increases K 1/2 of Na+ ions for activation of the ion pump. Phosphorylation of FXYD1 by protein kinase A at Ser68 abrogates this effect. Conversely, for proteoliposomes made with high concentrations of DOPS (>10 %), little or no effect of FXYD1 on the K 1/2 of Na+ ions is observed. Depending on ionic strength and lipid composition of the proteoliposomes, FXYD1 can alter the K 1/2 of Na+ ions by up to twofold. We propose possible molecular mechanisms to explain the regulatory effects of FXYD1 and the influence of charged lipid and protein phosphorylation. In particular, the positively charged C-terminal helix of FXYD1 appears to be highly mobile and may interact with the cytoplasmic N domain of the α-subunit, the interaction being strongly affected by phosphorylation at Ser68 and the surface charge of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  PubMed  Google Scholar 

  • Apell H-J, Bersch B (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta 903:480–494

    Article  CAS  PubMed  Google Scholar 

  • Apell H-J, Marcus MM, Anner BM, Oetliker H, Läuger P (1985) Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase. J Membr Biol 85:49–63

    Article  CAS  PubMed  Google Scholar 

  • Apell H-J, Häring V, Roudna M (1990) Na,K-ATPase in artificial lipid vesicles: comparison of Na, K and Na- only pumping mode. Biochim Biophys Acta 1023:81–90

    Article  CAS  PubMed  Google Scholar 

  • Bibert S, Roy S, Schaer D, Horisberger JD, Geering K (2008) Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na,K-ATPase isozymes. J Biol Chem 283:476–486

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt J, Despa S, Han F, Hou Z, Robia SL, Lingrel JB, Bers DM (2009) Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J Biol Chem 284:26749–26757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Cirri E, Katz A, Mishra NK, Belogus T, Lifshitz Y, Garty H, Karlish SJ, Apell HJ (2011) Phospholemman (FXYD1) raises the affinity of the human α1β1 isoform of Na,K-ATPase for Na ions. Biochemistry 50:3736–3748

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Goldshleger R, Shainskaya A, Tal DM, Ebel C, leMaire M, Karlish SJ (2005) Purification of Na+, K+-ATPase expressed in Pichia pastoris reveals an essential role of phospholipid–protein interactions. J Biol Chem 280:16610–16618

    Article  CAS  PubMed  Google Scholar 

  • Cornelius F, Mahmmoud YA (2003) Functional modulation of the sodium pump: the regulatory proteins “Fixit”. News Physiol Sci 18:119–124

    CAS  PubMed  Google Scholar 

  • Crambert G, Geering K (2003) FXYD proteins: new tissue-specific regulators of the ubiquitous Na,K-ATPase. Sci STKE 2003:RE1

    PubMed  Google Scholar 

  • Crambert G, Beguin P, Pestov NB, Modyanov NN, Geering K (2002a) βm, a structural member of the X, K-ATPase β subunit family, resides in the ER and does not associate with any known X, K-ATPase α subunit. Biochemistry 41:6723–6733

    Article  CAS  PubMed  Google Scholar 

  • Crambert G, Fuzesi M, Garty H, Karlish S, Geering K (2002b) Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA 99:11476–11481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Pont JJHHM, van Prooijen-van Eeden A, Bonting SL (1978) Role of negatively charged phospholipids in highly purified (Na++K+)-ATPase from rabbit kidney outer medulla. Biochim Biophys Acta 508:464–477

    Article  PubMed  Google Scholar 

  • Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, Tucker AL, Bers DM (2005) Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252–259

    Article  CAS  PubMed  Google Scholar 

  • Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ (2003) Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci 23:2161–2169

    CAS  PubMed  Google Scholar 

  • Floyd RV, Wray S, Martin-Vasallo P, Mobasheri A (2010) Differential cellular expression of FXYD1 (phospholemman) and FXYD2 (gamma subunit of Na,K-ATPase) in normal human tissues: a study using high density human tissue microarrays. Ann Anat 192:7–16

    Article  CAS  PubMed  Google Scholar 

  • Franzin CM, Gong XM, Teriete P, Marassi FM (2007) Structures of the FXYD regulatory proteins in lipid micelles and membranes. J Bioenerg Biomembr 39:379–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller W, Eaton P, Bell JR, Shattock MJ (2004) Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na/K-ATPase. FASEB J 18:197–199

    CAS  PubMed  Google Scholar 

  • Fuller W, Howie J, McLatchie LM, Weber RJ, Hastie CJ, Burness K, Pavlovic D, Shattock MJ (2009) FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. Am J Physiol Cell Physiol 296:C1346–C1355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garty H, Karlish SJ (2006) Role of FXYD proteins in ion transport. Annu Rev Physiol 68:431–459

    Article  CAS  PubMed  Google Scholar 

  • Geering K (2005) Function of FXYD proteins, regulators of Na,K-ATPase. J Bioenerg Biomembr 37:387–392

    Article  CAS  PubMed  Google Scholar 

  • Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250

    Article  CAS  PubMed  Google Scholar 

  • Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  CAS  PubMed  Google Scholar 

  • Geering K, Beguin P, Garty H, Karlish S, Fuzesi M, Horisberger JD, Crambert G (2003) FXYD proteins: new tissue- and isoform-specific regulators of Na,K-ATPase. Ann N Y Acad Sci 986:388–394

    Article  CAS  PubMed  Google Scholar 

  • Gloster J, Harris P (1969) The lipid composition of mitochondrial and microsomal fractions of human myocardial homogenates. Cardiovasc Res 3:45–51

    Article  CAS  PubMed  Google Scholar 

  • Habeck M, Cirri E, Katz A, Karlish SJ, Apell HJ (2009) Investigation of electrogenic partial reactions in detergent-solubilized Na,K-ATPase. Biochemistry 48:9147–9155

    Article  CAS  PubMed  Google Scholar 

  • Han F, Tucker AL, Lingrel JB, Despa S, Bers DM (2009) Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman. Am J Physiol Cell Physiol 297:C699–C705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F, Bossuyt J, Martin JL, Despa S, Bers DM (2010) Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase. Am J Physiol Cell Physiol 299:C1363–C1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haviv H, Cohen E, Lifshitz Y, Tal DM, Goldshleger R, Karlish SJ (2007) Stabilization of Na+, K+-ATPase purified from Pichia pastoris membranes by specific interactions with lipids. Biochemistry 46:12855–12867

    Article  CAS  PubMed  Google Scholar 

  • Hughes E, Whittaker CA, Barsukov IL, Esmann M, Middleton DA (2011) A study of the membrane association and regulatory effect of the phospholemman cytoplasmic domain. Biochim Biophys Acta 1808:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen PL (1974) Isolation of (Na++K+)-ATPase. Methods Enzymol 32:277–290

    Article  PubMed  Google Scholar 

  • Katz A, Lifshitz Y, Bab-Dinitz E, Kapri-Pardes E, Goldshleger R, Tal DM, Karlish SJ (2010) Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase. J Biol Chem 285:19582–19592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambert O, Levy D, Ranck JL, Leblanc G, Rigaud JL (1998) A new “gel-like” phase in dodecyl maltoside–lipid mixtures: implications in solubilization and reconstitution studies. Biophys J 74:918–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lifshitz Y, Lindzen M, Garty H, Karlish SJ (2006) Functional interactions of phospholemman (PLM) (FXYD1) with Na+, K+-ATPase: purification of α1/β1/PLM complexes expressed in Pichia pastoris. J Biol Chem 281:15790–15799

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJ (2007) Purification of the human α2 isoform of Na,K-ATPase expressed in Pichia pastoris: stabilization by lipids and FXYD1. Biochemistry 46:14937–14950

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Askari A (2006) Beta-subunit of cardiac Na+-K+-ATPase dictates the concentration of the functional enzyme in caveolae. Am J Physiol Cell Physiol 291:C569–C578

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Mohammadi K, Aynafshar B, Wang H, Li D, Liu J, Ivanov AV, Xie Z, Askari A (2003) Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol 284:C1550–C1560

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S (1977) Electrostatic potentials at membrane–solution interfaces. Current topics in membranes and transport, vol 9. Academic Press, New York, pp 71–144

    Google Scholar 

  • Mishra NK, Peleg Y, Cirri E, Belogus T, Lifshitz Y, Voelker DR, Apell HJ, Garty H, Karlish SJ (2011) FXYD proteins stabilize Na,K-ATPase: amplification of specific phosphatidylserine–protein interactions. J Biol Chem 286:9699–9712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium–potassium pump. Nature 450:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130

    CAS  PubMed  Google Scholar 

  • Pavlovic D, Fuller W, Shattock MJ (2007) The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB J 21:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Post LL, Schuel R, Schuel H (1988) Evidence that hatching enzyme of the sea urchin Strongylocentrotus purpuratus is a chymotrypsin-like protease. Biochem Cell Biol 66:1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Presti CF, Jones LR, Lindemann JP (1985a) Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem 260:3860–3867

    CAS  PubMed  Google Scholar 

  • Presti CF, Scott BT, Jones LR (1985b) Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem 260:13879–13889

    CAS  PubMed  Google Scholar 

  • Schneeberger A, Apell H-J (1999) Ion selectivity of the cytoplasmic binding sites of the Na,K-ATPase: I. Sodium binding is associated with a conformational rearrangement. J Membr Biol 168:221–228

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AK, Nagano M, Nakao M, Lindenmayer GE, Allen JC (1971) The sodium- and potassium-activated adenosinetriphosphatase system. Methods Pharmacol 1:361–388

    Article  CAS  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium–potassium pump at 2.4 a resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  • Silverman BZ, Fuller W, Eaton P, Deng J, Moorman JR, Cheung JY, James AF, Shattock MJ (2005) Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K-ATPase. Cardiovasc Res 65:93–103

    Article  CAS  PubMed  Google Scholar 

  • Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  CAS  PubMed  Google Scholar 

  • Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46:6774–6783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walaas SI, Czernik AJ, Olstad OK, Sletten K, Walaas O (1994) Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem J 304(Pt 2):635–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kay Diederichs for his help in creating the figures with the molecular structures. The work was financially supported by the German Israeli Foundation (Grant 922-165.9 to H.-J. A. and S. J. K.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Apell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 866 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirri, E., Kirchner, C., Becker, S. et al. Surface Charges of the Membrane Crucially Affect Regulation of Na,K-ATPase by Phospholemman (FXYD1). J Membrane Biol 246, 967–979 (2013). https://doi.org/10.1007/s00232-013-9600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9600-5

Keywords

Navigation