Skip to main content
Log in

Relative CO2/NH3 Permeabilities of Human RhAG, RhBG and RhCG

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). \(({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }}\) and \(({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}\) were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by \(({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }} /({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}\) values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Attmane-Elakeb A, Amlal H, Bichara M (2001) Ammonium carriers in medullary thick ascending limb. Am J Physiol Renal Physiol 280:F1–F9

    CAS  PubMed  Google Scholar 

  • Bakouh N, Benjelloun F, Cherif-Zahar B, Planelles G (2006) The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus Clin Biol 13:139–146

    Article  CAS  PubMed  Google Scholar 

  • Bishop JM, Verlander JW, Lee H-W et al (2010) Role of the rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 299:F1065–F1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biver S, Belge H, Bourgeois S et al (2008) A role for rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456:339–343

    Article  CAS  PubMed  Google Scholar 

  • Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 transport. J Gen Physiol 81:53–94

    Article  CAS  PubMed  Google Scholar 

  • Brion LP, Schwartz JH, Zavilowitz BJ, Schwartz GJ (1988) Micro-method for the measurement of carbonic anhydrase activity in cellular homogenates. Anal Biochem 175:289–297

    Article  CAS  PubMed  Google Scholar 

  • Brown ACN, Hallouane D, Mawby WJ et al (2009) RhCG is the major putative ammonia transporter expressed in the human kidney, and RhBG is not expressed at detectable levels. Am J Physiol Renal Physiol 296:F1279–F1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce LJ, Guizouarn H, Burton NM et al (2009) The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood 113:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Cooper GJ, Boron WF (1998) Effect of pCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol Cell Physiol 275:C1481–C1486

    CAS  Google Scholar 

  • Eladari D, Cheval L, Quentin F et al (2002) Expression of RhCG, a new putative NH3/NH4 + transporter, along the rat nephron. J Am Soc Nephrol 13:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ et al (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20:1974–1981

    Article  CAS  PubMed  Google Scholar 

  • Endeward V, Cartron J-P, Ripoche P, Gros G (2008) RhAG protein of the rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22:64–73

    Article  CAS  PubMed  Google Scholar 

  • Geyer RR, Musa-Aziz R, Enkavi G et al (2013a) Movement of NH3 through the human urea transporter B (UT-B): a new gas channel. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00609.2012

    PubMed Central  PubMed  Google Scholar 

  • Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013b) Relative CO2/NH3 selectivities of mammalian aquaporins 0–9. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00033.2013

    PubMed  Google Scholar 

  • Giebisch G, Windhager EE (2009) Urine concentration and dilution. In: Boron WF, Boulpaep EL (eds) Medical physiology: a cellular and molecular approach, 2nd edn. Elsevier, Philadelphia, pp 835–850

    Chapter  Google Scholar 

  • Gruswitz F, Chaudhary S, Ho JD et al (2010) Function of human Rh based on structure of RhCG at 2.1 Å. Proc Natl Acad Sci USA 107:9638–9643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han K-H, Croker BP, Clapp WL et al (2006) Expression of the ammonia transporter, Rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 17:2670–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han K-H, Mekala K, Babida V et al (2009) Expression of the gas-transporting proteins, Rh B glycoprotein and Rh C glycoprotein, in the murine lung. Am J Physiol Lung Cell Mol Physiol 297:L153–L163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han K-H, Lee H-W, Handlogten ME et al (2013) Expression of the ammonia transporter family member, Rh B glycoprotein, in the human kidney. Am J Physiol Renal Physiol 304:F972–F981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herrera M, Garvin JL (2007) Novel role of AQP-1 in NO-dependent vasorelaxation. Am J Physiol Renal Physiol 292:F1443–F1451

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Hong NJ, Garvin JL (2006) Aquaporin-1 transports NO across cell membranes. Hypertension 48:157–164

    Article  CAS  PubMed  Google Scholar 

  • Javelle A, Severi E, Thornton J, Merrick M (2004) Ammonium sensing in Escherichia coli: role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 279:8530–8538

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15:276–281

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol (Oxf) 187:169–176

    Article  CAS  Google Scholar 

  • Kim H-Y, Verlander JW, Bishop JM et al (2009) Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney. Am J Physiol Renal Physiol 296:F543–F555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H-W, Verlander JW, Bishop JM et al (2009) Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 296:F1364–F1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee H-W, Verlander JW, Bishop JM et al (2010) Effect of intercalated cell–specific Rh C glycoprotein deletion on basal and metabolic acidosis–stimulated renal ammonia excretion. Am J Physiol Renal Physiol 299:F369–F379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez C, Métral S, Eladari D et al (2005) The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J Biol Chem 280:8221–8228

    Article  CAS  PubMed  Google Scholar 

  • Ludewig U (2004) Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol (Lond) 559:751–759

    Article  CAS  Google Scholar 

  • Mak D-OD, Dang B, Weiner ID et al (2006) Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Renal Physiol 290:F297–F305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marini AM, Boeckstaens M, Benjelloun F et al (2006) Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Curr Genet 49:364–374

    Article  CAS  PubMed  Google Scholar 

  • Musa-Aziz R, Chen L-M, Pelletier MF, Boron WF (2009a) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci USA 106:5406–5411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Musa-Aziz R, Jiang L, Chen L-M et al (2009b) Concentration-dependent effects on intracellular and surface pH of exposing Xenopus oocytes to solutions containing NH3/NH4 +. J Membr Biol 228:15–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Musa-Aziz R, Boron WF, Parker MD (2010) Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 51:134–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagami GT (1988) Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81:159–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol Cell Physiol 274:C543–C548

    CAS  Google Scholar 

  • Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Transport of NH3/NH4 + in oocytes expressing aquaporin-1. Am J Physiol Renal Physiol 281:F255–F263

    CAS  PubMed  Google Scholar 

  • Quentin F, Eladari D, Cheval L et al (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14:545–554

    Article  CAS  PubMed  Google Scholar 

  • Ripoche P, Bertrand O, Gane P et al (2004) Human rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci USA 101:17222–17227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ripoche P, Goossens D, Devuyst O et al (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol 13:117–122

    Article  CAS  PubMed  Google Scholar 

  • Romero MF (2005) Molecular pathophysiology of SLC4 bicarbonate transporters. Curr Opin Nephrol Hypertens 14:495–501

    Article  CAS  PubMed  Google Scholar 

  • Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+CO3 cotransporter. Nature 387:409–413

    Article  CAS  PubMed  Google Scholar 

  • Seshadri RM, Klein JD, Kozlowski S et al (2006) Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290:F397–F408

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Binder HJ, Geibel JP, Boron WF (1995) An apical permeability barrier to NH3/NH4 + in isolated, perfused colonic crypts. Proc Natl Acad Sci USA 92:11573–11577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somersalo E, Occhipinti R, Boron WF, Calvetti D (2012) A reaction-diffusion model of CO2 influx into an oocyte. J Theor Biol 309:185–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toye AM, Williamson RC, Khanfar M et al (2008) Band 3 Courcouronnes (Ser667Phe): a trafficking mutant differentially rescued by wild-type band 3 and glycophorin A. Blood 111:5380–5389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ 35:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Verlander JW, Miller RT, Frank AE et al (2003) Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Renal Physiol 284:F323–F337

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Devuyst O, Bourgeois S, Mohebbi N (2009) Regulated acid-base transport in the collecting duct. Pflugers Arch 458:137–156

    Article  CAS  PubMed  Google Scholar 

  • Wagner CA, Devuyst O, Belge H et al (2011) The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 79:154–161

    Article  CAS  PubMed  Google Scholar 

  • Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 368:332–335

    Article  CAS  PubMed  Google Scholar 

  • Weiner ID, Verlander JW (2010) Molecular physiology of the Rh ammonia transport proteins. Curr Opin Nephrol Hypertens 19:471–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner ID, Verlander JW (2011) Role of NH3/NH4 + transporters in renal acid-base transport. Am J Physiol Renal Physiol 300:F11–F23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zidi-Yahiaoui N, Mouro-Chanteloup I, D’Ambrosio A-M et al (2005) Human rhesus B and rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochem J 391:33–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dale Huffman for computer support, Dr. Alice Brown (University of Bristol) for plasmid cloning and Dr. Nancy Amaral Rebouças (University of São Paulo) and Dr. Seong-Ki Lee (Case Western Reserve University) for helpful discussions. R. R. G. was supported by postdoctoral fellowship N00014-09-1-0246 from the Office of Naval Research. R. M.-A. was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, 08/128663). This work was supported by Office of Naval Research grant N00014-11-1-0889 and NIH grant DK81567 to W. F. B. A. M. T. received funding from Kidney Research UK and NHS Blood and Transplant R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raif Musa-Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, R.R., Parker, M.D., Toye, A.M. et al. Relative CO2/NH3 Permeabilities of Human RhAG, RhBG and RhCG. J Membrane Biol 246, 915–926 (2013). https://doi.org/10.1007/s00232-013-9593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9593-0

Keywords

Navigation