The Journal of Membrane Biology

, Volume 246, Issue 12, pp 903–913 | Cite as

Atox1 Contains Positive Residues that Mediate Membrane Association and Aid Subsequent Copper Loading

  • Adrian G. Flores
  • Vinzenz M. UngerEmail author


Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein–protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.


Atox1 Chaperone Copper trafficking Copper homeostasis Membrane scaffold 



We would like to thank Dr Amy Rosenzweig for providing an Atox1 clone. We also are indebted to Dr Svetlana Lutsenko for the gift of the HEK293TREx cell line and a matched expression vector. This work was supported by NIH grant P01GM067166 (V.M.U.).


  1. Adamian L, Naveed H, Liang J (2011) Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim Biophys Acta 1808(4):1092–1102PubMedCentralCrossRefPubMedGoogle Scholar
  2. Anastassopoulou I, Banci L, Bertini I, Cantini F, Katsari E, Rosato A (2004) Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1. Biochemistry 43(41):13046–13053CrossRefPubMedGoogle Scholar
  3. Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran TV (2001a) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276(44):41365–41376CrossRefPubMedGoogle Scholar
  4. Arnesano F, Banci L, Bertini I, Huffman DL, O’Halloran TV (2001b) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40(6):1528–1539CrossRefPubMedGoogle Scholar
  5. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12(2):255–271CrossRefPubMedGoogle Scholar
  6. Badarau A, Dennison C (2011) Copper trafficking mechanism of CXXC-containing domains: insight from the pH-dependence of their Cu(I) affinities. J Am Chem Soc 133(9):2983–2988CrossRefPubMedGoogle Scholar
  7. Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A, Voulgaris P (2006) The Atx1–Ccc2 complex is a metal-mediated protein–protein interaction. Nat Chem Biol 2(7):367–368CrossRefPubMedGoogle Scholar
  8. Banci L, Bertini I, Calderone V, Della-Malva N, Felli IC, Neri S, Pavelkova A, Rosato A (2009) Copper(I)-mediated protein–protein interactions result from suboptimal interaction surfaces. Biochem J 422(1):37–42CrossRefPubMedGoogle Scholar
  9. Boal AK, Rosenzweig AC (2009) Structural biology of copper trafficking. Chem Rev 109(10):4760–4779PubMedCentralCrossRefPubMedGoogle Scholar
  10. Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67(Suppl 5):1069S–1073SPubMedGoogle Scholar
  11. Dancis A, Haile D, Yuan DS, Klausner RD (1994) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269(41):25660–25667PubMedGoogle Scholar
  12. Daniel KG, Harbach RH, Guida WC, Dou QP (2004) Copper storage diseases: Menkes, Wilsons, and cancer. Front Biosci 9:2652–2662CrossRefPubMedGoogle Scholar
  13. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1(6):1125–1142PubMedCentralCrossRefPubMedGoogle Scholar
  14. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85CrossRefPubMedGoogle Scholar
  15. Hamza I, Schaefer M, Klomp LW, Gitlin JD (1999) Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci USA 96(23):13363–13368PubMedCentralCrossRefPubMedGoogle Scholar
  16. Hartman NC, Groves JT (2011) Signaling clusters in the cell membrane. Curr Opin Cell Biol 23(4):370–376PubMedCentralCrossRefPubMedGoogle Scholar
  17. Hatori Y, Lutsenko S (2013) An expanding range of functions for the copper chaperone/antioxidant protein Atox1. Antioxid Redox Signal. doi: 10.1089/ars.2012.5086 PubMedCentralPubMedGoogle Scholar
  18. Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117(4):1227–1234PubMedCentralCrossRefPubMedGoogle Scholar
  19. Huffman DL, O’Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275(25):18611–18614CrossRefPubMedGoogle Scholar
  20. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272(34):21461–21466CrossRefPubMedGoogle Scholar
  21. Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273(3):1749–1754CrossRefPubMedGoogle Scholar
  22. Hussain F, Olson JS, Wittung-Stafshede P (2008) Conserved residues modulate copper release in human copper chaperone Atox1. Proc Natl Acad Sci USA 105(32):11158–11163PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185CrossRefPubMedGoogle Scholar
  24. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221–9226CrossRefPubMedGoogle Scholar
  25. Larin D, Mekios C, Das K, Ross B, Yang AS, Gilliam TC (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J Biol Chem 274(40):28497–28504CrossRefPubMedGoogle Scholar
  26. Lin SJ, Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92(9):3784–3788PubMedCentralCrossRefPubMedGoogle Scholar
  27. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272(14):9215–9220CrossRefPubMedGoogle Scholar
  28. Linder MC, Goode CA (1991) Biochemistry of copper. Biochemistry of the elements, vol 10. Plenum Press, New YorkCrossRefGoogle Scholar
  29. Lutsenko S, Gupta A, Burkhead JL, Zuzel V (2008) Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 476(1):22–32PubMedCentralCrossRefPubMedGoogle Scholar
  30. Maryon EB, Molloy SA, Kaplan JH (2013) Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol 304(8):C768–C779PubMedCentralCrossRefPubMedGoogle Scholar
  31. Narindrasorasak S, Zhang X, Roberts EA, Sarkar B (2004) Comparative analysis of metal binding characteristics of copper chaperone proteins, Atx1 and ATOX1. Bioinorg Chem Appl 2(1–2):105–123PubMedCentralCrossRefGoogle Scholar
  32. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275(33):25057–25060CrossRefPubMedGoogle Scholar
  33. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15(22):6084–6095PubMedCentralPubMedGoogle Scholar
  34. Pope CR, DeFeo CJ, Unger VM (submitted) Cellular distribution of copper to super oxide dismutase involves scaffolding by membranes. PNASGoogle Scholar
  35. Portnoy ME, Rosenzweig AC, Rae T, Huffman DL, O’Halloran TV, Culotta VC (1999) Structure–function analyses of the ATX1 metallochaperone. J Biol Chem 274(21):15041–15045CrossRefPubMedGoogle Scholar
  36. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278(5339):853–856CrossRefPubMedGoogle Scholar
  37. Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9(6):673–677CrossRefPubMedGoogle Scholar
  38. Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383(Pt 2):303–309PubMedCentralCrossRefPubMedGoogle Scholar
  39. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124(Pt 1):5–8CrossRefPubMedGoogle Scholar
  40. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev 9(2):112–124CrossRefGoogle Scholar
  41. Wakabayashi T, Nakamura N, Sambongi Y, Wada Y, Oka T, Futai M (1998) Identification of the copper chaperone, CUC-1, in Caenorhabditis elegans: tissue specific co-expression with the copper transporting ATPase, CUA-1. FEBS Lett 440(1–2):141–146CrossRefPubMedGoogle Scholar
  42. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277(31):27953–27959CrossRefPubMedGoogle Scholar
  43. Xiao Z, Wedd AG (2002) A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem Commun (Camb) 6:588–589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Molecular Biosciences and Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonUSA

Personalised recommendations