Skip to main content
Log in

Morphological Changes of Proteolipid Giant Unilamellar Vesicles Affected by Macrovipera lebetina obtusa Venom Visualized with Fluorescence Microscope

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

As a rule, zootoxins are complex and biologically active, and therefore the greater part of zootoxins is subjected to biotransformation and interacts with biological membranes. In this case, the interaction of different venom components with the membranes is not always the same. The present study shows how the giant unilamellar vesicles (GUV) from bovine brain proteolipids interact with Macrovipera lebetina obtusa venom. GUV (mean diameter 30 μm) were formed by the electroformation method. We used 8-anilino-1-naphthalenesulfonic acid and pyrene as fluorescence probes, which allowed us to quantify the fluidity changes in the membrane by measuring the fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external fields. Kinetics and application. Progr Colloid Polym Sci 89:127–131

    Article  CAS  Google Scholar 

  • Ayvazian NM, Ghazaryan NA (2012) Lipid bilayer condition abnormalities following Macroviperalebetinaobtusa snake envenomation. Toxicon 60:607–613

    Article  Google Scholar 

  • Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observations of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  PubMed  CAS  Google Scholar 

  • Bagatolli LA, Gratton EA (2000) Correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    Article  PubMed  CAS  Google Scholar 

  • Bordushkov Yu, Goroshinskaya I, Frantzyantz E (1993) Effects of electromagnetic field exposure on some structural and functional properties of blood lymphocyte and erythrocyte membranes. Biofizika 38:1098–1103

    Google Scholar 

  • Burack WR, Dibble AR, Allietta MM, Biltonen RL (1997) Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry 36:10551–10557

    Article  PubMed  CAS  Google Scholar 

  • Eble JA, Bruckner P, Mayer U (2003) Viperalebetina venom contains two disintegrins inhibiting laminin-binding beta1 integrins. J Biol Chem 278:26488–26496

    Article  PubMed  CAS  Google Scholar 

  • Galla HJ, Sackman E (1974) Lateral diffusion in the hydrophobic region of membranes: use of pyreneexcimers as optical probes. Biochim Biophys Acta 339:103–115

    Article  PubMed  CAS  Google Scholar 

  • Lakin GF (1992) Biometry. Vishaya Shcola, Moscow [in Russian]

  • Mueller P, Rudin D, Tien H (1962) Reconstruction of cell membranes structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  PubMed  CAS  Google Scholar 

  • Sanz L, Ayvazyan N, Calvete JJ (2008) Snake venomics of the Armenian mountain vipers Macroviperalebetinaobtusa and Viperaraddei. J Proteomics 71:198–209

    Article  PubMed  CAS  Google Scholar 

  • Verstraeten SV, Hammerstone JF, Keen CL, Fraga CG, Oteiza PI (2005) Antioxidant and membrane effects of procyanidin dimmers and trimers isolated from peanut and cocoa. J Agric Food Chem 53:5041–5048

    Article  PubMed  CAS  Google Scholar 

  • Zakharyan AE, Ayvazian NM (2005) Modeling of BLMs in aspect of phylogenetic development of vertebrates. In: Ottova-Leitmannova A (ed) Advances in planar lipid bilayers and liposomes, 2nd edn. Elsevier, Amsterdam, pp 238–259

    Google Scholar 

  • Zobelinsky CA, Pomazansky LF, Chirkovskaya EB (1984) Brain proteolirids of representatives of different vertebratae classes. J Evol Biochem Physiol 20:240–246

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant N11-1f231 from the State Committee of Science, Ministry of Education and Science RA.

Conflict of interest

The authors report that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ghazaryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazaryan, N.A., Ghulikyan, L.A. & Ayvazyan, N.M. Morphological Changes of Proteolipid Giant Unilamellar Vesicles Affected by Macrovipera lebetina obtusa Venom Visualized with Fluorescence Microscope. J Membrane Biol 246, 627–632 (2013). https://doi.org/10.1007/s00232-013-9576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9576-1

Keywords

Navigation