Skip to main content
Log in

Up-Regulation of the Inwardly Rectifying K+ Channel Kir2.1 (KCNJ2) by Protein Kinase B (PKB/Akt) and PIKfyve

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The inward rectifier K+ channel Kir2.1 contributes to the maintenance of the resting cell membrane potential in excitable cells. Loss of function mutations of KCNJ2 encoding Kir2.1 result in Andersen-Tawil syndrome, a disorder characterized by periodic paralysis, cardiac arrhythmia, and dysmorphic features. The ubiquitously expressed protein kinase B (PKB/Akt) activates the phosphatidylinositol-3-phosphate-5-kinase PIKfyve, which in turn regulates a variety of carriers and channels. The present study explored whether PKB/PIKfve contributes to the regulation of Kir2.1. To this end, cRNA encoding Kir2.1 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild type PKB (PKB), constitutively active T308D,S473DPKB or inactive T308A,S473APKB. Kir2.1 activity was determined by two-electrode voltage-clamp. As a result, PKB and T308D,S473DPKB, but not T308A,S473APKB, significantly increased Kir2.1-mediated currents. The effect of PKB was mimicked by coexpression of PIKfyve but not of S318APikfyve lacking the PKB phosphorylation site. The decay of Kir2.1-mediated currents after inhibition of channel insertion into the cell membrane by brefeldin A (5 μM) was similar in oocytes expressing Kir2.1 + PKB or Kir2.1 + PIKfyve to those expressing Kir2.1 alone, suggesting that PKB and PIKfyve influence channel insertion into rather than channel retrieval from the cell membrane. In conclusion, PKB and PIKfyve are novel regulators of Kir2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Alesutan IS, Ureche ON, Laufer J, Klaus F, Zürn A, Lindner R, Strutz-Seebohm N, Tavaré JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2010) Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 25:187–194

    Article  PubMed  CAS  Google Scholar 

  • Andersen ED, Krasilnikoff PA, Overvad H (1971) Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand 60:559–564

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Reinehr R, Graf D, vom Dahl S, Häussinger D (2007) Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem 19:89–98

    Article  PubMed  CAS  Google Scholar 

  • Berwick DC, Dell GC, Welsh GI, Heesom KJ, Hers I, Fletcher LM, Cooke FT, Tavaré JM (2004) Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117:5985–5993

    Article  PubMed  CAS  Google Scholar 

  • Bhandaru M, Kempe DS, Rotte A, Capuano P, Pathare G, Sopjani M, Alesutan I, Tyan L, Huang DY, Siraskar B, Judenhofer MS, Stange G, Pichler BJ, Biber J, Quintanilla-Martinez L, Wagner CA, Pearce D, Föller M, Lang F (2011) Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney Int 80:61–67

    Article  PubMed  CAS  Google Scholar 

  • Boehmer C, Rajamanickam J, Schniepp R, Kohler K, Wulff P, Kuhl D, Palmada M, Lang F (2005) Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid dependent kinases SGK1 and SGK3. Biochem Biophys Res Commun 329:738–742

    Article  PubMed  CAS  Google Scholar 

  • Boehmer C, Palmada M, Rajamanickam J, Schniepp R, Amara S, Lang F (2006) Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 97:911–921

    Article  PubMed  CAS  Google Scholar 

  • Böhmer C, Sopjani M, Klaus F, Lindner R, Laufer J, Jeyaraj S, Lang F, Palmada M (2010) The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19. Cell Physiol Biochem 25:723–732

    Article  PubMed  Google Scholar 

  • Boiteux A, Hess B (1981) Design of glycolysis. Philos Trans R Soc Lond B Biol Sci 293:5–22

    Article  PubMed  CAS  Google Scholar 

  • Bortner CD, Cidlowski JA (2004) The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch 448:313–318

    Article  PubMed  CAS  Google Scholar 

  • Bravo R, Otero C, Allende CC, Allende JE (1978) Amphibian oocyte maturation and protein synthesis: related inhibition by cyclic AMP, theophylline, and papaverine. Proc Natl Acad Sci USA 75:1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Collins A, Larson M (2002) Differential sensitivity of inward rectifier K+ channels to metabolic inhibitors. J Biol Chem 277:35815–35818

    Article  PubMed  CAS  Google Scholar 

  • Dart C, Leyland ML (2001) Targeting of an A kinase-anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. J Biol Chem 276:20499–20505

    Article  PubMed  CAS  Google Scholar 

  • de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbé S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893

    Article  PubMed  Google Scholar 

  • Dërmaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmüller M, Lang F (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 28:251–258

    Article  PubMed  Google Scholar 

  • Diaz RJ, Zobel C, Cho HC, Batthish M, Hinek A, Backx PH, Wilson GJ (2004) Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes. Circ Res 95:325–332

    Article  PubMed  CAS  Google Scholar 

  • Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F (2004) Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. Obes Res 12:862–870

    Article  PubMed  CAS  Google Scholar 

  • Donaldson MR, Jensen JL, Tristani-Firouzi M, Tawil R, Bendahhou S, Suarez WA, Cobo AM, Poza JJ, Behr E, Wagstaff J, Szepetowski P, Pereira S, Mozaffar T, Escolar DM, Fu YH, Ptácek LJ (2003) PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology 60:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Eckey K, Strutz-Seebohm N, Katz G, Fuhrmann G, Henrion U, Pott L, Linke WA, Arad M, Lang F, Seebohm G (2010) Modulation of human ether a gogo related channels by CASQ2 contributes to etiology of catecholaminergic polymorphic ventricular tachycardia (CPVT). Cell Physiol Biochem 26:503–512

    Article  PubMed  CAS  Google Scholar 

  • Föller M, Kasinathan RS, Duranton C, Wieder T, Huber SM, Lang F (2006) PGE2-induced apoptotic cell death in K562 human leukaemia cells. Cell Physiol Biochem 17:201–210

    Article  PubMed  Google Scholar 

  • Gehring EM, Lam RS, Siraskar G, Koutsouki E, Seebohm G, Ureche ON, Ureche L, Baltaev R, Tavare JM, Lang F (2009a) PIKfyve upregulates CFTR activity. Biochem Biophys Res Commun 390:952–957

    Article  PubMed  CAS  Google Scholar 

  • Gehring EM, Zurn A, Klaus F, Laufer J, Sopjani M, Lindner R, Strutz-Seebohm N, Tavaré JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2009b) Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24:361–368

    Article  PubMed  CAS  Google Scholar 

  • Henry P, Pearson WL, Nichols CG (1996) Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes. J Physiol 495(pt 3):681–688

    PubMed  CAS  Google Scholar 

  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  PubMed  CAS  Google Scholar 

  • Hill EV, Hudson CA, Vertommen D, Rider MH, Tavaré JM (2010) Regulation of PIKfyve phosphorylation by insulin and osmotic stress. Biochem Biophys Res Commun 397:650–655

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dërmaku-Sopjani M, Lang F (2011) Regulation of the glutamate transporters by JAK2. Cell Physiol Biochem 28:693–702

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–26147

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J, Shisheva A (2002) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5–P2 production for endomembrane integrity. J Biol Chem 277:9206–9211

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A (2003) PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14:4581–4591

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5–P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291:C393–C404

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Fenner H, Shisheva A (2009) PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284:35794–35806

    Article  PubMed  CAS  Google Scholar 

  • Jones SV (2003) Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Mol Pharmacol 64:987–993

    Article  PubMed  CAS  Google Scholar 

  • Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM (2012) Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 69:625–643

    Article  CAS  Google Scholar 

  • Klaus F, Palmada M, Lindner R, Laufer J, Jeyaraj S, Lang F, Boehmer C (2008) Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol 586:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G, Lang F (2009) PIKfyve-dependent regulation of the Cl channel ClC-2. Biochem Biophys Res Commun 381:407–411

    Article  PubMed  CAS  Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Rehwald W (1992) Potassium channels in renal epithelial transport regulation. Physiol Rev 72:1–32

    PubMed  CAS  Google Scholar 

  • Lang F, Messner G, Rehwald W (1986) Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 250:F953–F962

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  • Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA (2004) A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem 279:19051–19063

    Article  PubMed  CAS  Google Scholar 

  • Leyland ML, Dart C (2004) An alternatively spliced isoform of PSD-93/chapsyn 110 binds to the inwardly rectifying potassium channel, Kir2.1. J Biol Chem 279:43427–43436

    Article  PubMed  CAS  Google Scholar 

  • Liu GX, Derst C, Schlichthörl G, Heinen S, Seebohm G, Brüggemann A, Kummer W, Veh RW, Daut J, Preisig-Müller R (2001a) Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 532:115–126

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME (2001b) Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 59:1061–1068

    PubMed  CAS  Google Scholar 

  • Lodge NJ, Normandin DE (1997) Alterations in Ito1, IKr and Ik1 density in the BIO TO-2 strain of syrian myopathic hamsters. J Mol Cell Cardiol 29:3211–3221

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Nichols CG (2001) Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol 33:625–638

    Article  PubMed  CAS  Google Scholar 

  • Lupescu A, Geiger C, Zahir N, Aberle S, Lang PA, Kramer S, Wesselborg S, Kandolf R, Foller M, Lang F, Bock CT (2009) Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol Biochem 23:211–220

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MR, Alesutan I, Föller M, Sopjani M, Bress A, Baur M, Salama RH, Bakr MS, Mohamed MA, Blin N, Lang F, Pfister M (2010) Functional analysis of a novel I71 N mutation in the GJB2 gene among Southern Egyptians causing autosomal recessive hearing loss. Cell Physiol Biochem 26:959–966

    Article  PubMed  CAS  Google Scholar 

  • Morris AJ, Smyth SS (2007) Measurement of autotaxin/lysophospholipase D activity. Methods Enzymol 434:89–104

    Article  PubMed  CAS  Google Scholar 

  • Nehring RB, Wischmeyer E, Döring F, Veh RW, Sheng M, Karschin A (2000) Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J Neurosci 20:156–162

    PubMed  CAS  Google Scholar 

  • O’Connor CM, Smith LD (1976) Inhibition of oocyte maturation by theophylline: possible mechanism of action. Dev Biol 52:318–322

    Article  PubMed  Google Scholar 

  • Palmada M, Speil A, Jeyaraj S, Böhmer C, Lang F (2005) The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Biochem Biophys Res Commun 331:272–277

    Article  PubMed  CAS  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptácek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Müller R, Schlichthörl G, Goerge T, Heinen S, Brüggemann A, Rajan S, Derst C, Veh RW, Daut J (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA 99:7774–7779

    Article  PubMed  Google Scholar 

  • Rexhepaj R, Dërmaku-Sopjani M, Gehring EM, Sopjani M, Kempe DS, Föller M, Lang F (2010) Stimulation of electrogenic glucose transport by glycogen synthase kinase 3. Cell Physiol Biochem 26:641–646

    Article  PubMed  CAS  Google Scholar 

  • Rohács T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem 274:36065–36072

    Article  PubMed  Google Scholar 

  • Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I (2004) Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 87:3850–3861

    Article  PubMed  CAS  Google Scholar 

  • Rusten TE, Rodahl LM, Pattni K, Englund C, Samakovlis C, Dove S, Brech A, Stenmark H (2006) Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 17:3989–4001

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    Article  PubMed  CAS  Google Scholar 

  • Sampson LJ, Leyland ML, Dart C (2003) Direct interaction between the actin-binding protein filamin-A and the inwardly rectifying potassium channel, Kir2.1. J Biol Chem 278:41988–41997

    Article  PubMed  CAS  Google Scholar 

  • Sansone V, Griggs RC, Meola G, Ptácek LJ, Barohn R, Iannaccone S, Bryan W, Baker N, Janas SJ, Scott W, Ririe D, Tawil R (1997) Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol 42:305–312

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589–21597

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R, Shisheva A (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276–47284

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Shisheva A (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865

    Article  PubMed  CAS  Google Scholar 

  • Schneider J, Nicolay JP, Foller M, Wieder T, Lang F (2007) Suicidal erythrocyte death following cellular K+ loss. Cell Physiol Biochem 20:35–44

    Article  PubMed  CAS  Google Scholar 

  • Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR, Baltaev R, Mack AF, Korniychuk G, Choudhury A, Marks D, Pagano RE, Attali B, Pfeufer A, Kass RS, Sanguinetti MC, Tavare JM, Lang F (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Wehner F, Okada Y (2006) Inhibition of hypertonicity-induced cation channels sensitizes HeLa cells to shrinkage-induced apoptosis. Cell Physiol Biochem 18:295–302

    Article  PubMed  CAS  Google Scholar 

  • Shojaiefard M, Christie DL, Lang F (2005) Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem Biophys Res Commun 334:742–746

    Article  PubMed  CAS  Google Scholar 

  • Shojaiefard M, Strutz-Seebohm N, Tavaré JM, Seebohm G, Lang F (2007) Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 359:843–847

    Article  PubMed  CAS  Google Scholar 

  • Soom M, Schönherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001) Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett 490:49–53

    Article  PubMed  CAS  Google Scholar 

  • Sopjani M, Kunert A, Czarkowski K, Klaus F, Laufer J, Föller M, Lang F (2010) Regulation of the Ca(2+) channel TRPV6 by the kinases SGK1, PKB/Akt, and PIKfyve. J Membr Biol 233:35–41

    Article  PubMed  CAS  Google Scholar 

  • Strutz-Seebohm N, Shojaiefard M, Christie D, Tavare J, Seebohm G, Lang F (2007) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20:729–734

    Article  PubMed  CAS  Google Scholar 

  • Strutz-Seebohm N, Pusch M, Wolf S, Stoll R, Tapken D, Gerwert K, Attali B, Seebohm G (2011) Structural basis of slow activation gating in the cardiac I Ks channel complex. Cell Physiol Biochem 27:443–452

    Article  PubMed  CAS  Google Scholar 

  • Tawil R, Ptacek LJ, Pavlakis SG, DeVivo DC, Penn AS, Ozdemir C, Griggs RC (1994) Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol 35:326–330

    Article  PubMed  CAS  Google Scholar 

  • Tristani-Firouzi M, Etheridge SP (2010) Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch 460:289–294

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta F, Green EM, Rousset M, Dolmetsch RE (2009) PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187:279–294

    Article  PubMed  CAS  Google Scholar 

  • Ureche ON, Baltaev R, Ureche L, Strutz-Seebohm N, Lang F, Seebohm G (2008) Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3. Cell Physiol Biochem 21:347–356

    Article  PubMed  CAS  Google Scholar 

  • Vicente R, Coma M, Busquets S, Moore-Carrasco R, López-Soriano FJ, Argilés JM, Felipe A (2004) The systemic inflammatory response is involved in the regulation of K(+) channel expression in brain via TNF-alpha-dependent and -independent pathways. FEBS Lett 572:189–194

    Article  PubMed  CAS  Google Scholar 

  • Watson RT, Pessin JE (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31:215–222

    Article  PubMed  CAS  Google Scholar 

  • Welsh GI, Hers I, Berwick DC, Dell G, Wherlock M, Birkin R, Leney S, Tavaré JM (2005) Role of protein kinase B in insulin-regulated glucose uptake. Biochem Soc Trans 33:346–349

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer E, Doring F, Karschin A (1998) Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem 273:34063–34068

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y (2005) A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Zhen XG, Yang J (2003) Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci 6:811–818

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Bobich JA (2004) ADP-ribosylation factor6 regulates both [3H]-noradrenaline and [14C]-glutamate exocytosis through phosphatidylinositol 4,5-bisphosphate. Neurochem Int 45:633–640

    Article  PubMed  CAS  Google Scholar 

  • Zitron E, Kiesecker C, Lück S, Kathöfer S, Thomas D, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA (2004) Human cardiac inwardly rectifying current IKir2.2 is upregulated by activation of protein kinase A. Cardiovasc Res 63:520–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of E. Faber. The article was meticulously prepared by S. Rübe. This study was supported by the Deutsche Forschungsgemeinschaft (GK 1302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munoz, C., Almilaji, A., Setiawan, I. et al. Up-Regulation of the Inwardly Rectifying K+ Channel Kir2.1 (KCNJ2) by Protein Kinase B (PKB/Akt) and PIKfyve. J Membrane Biol 246, 189–197 (2013). https://doi.org/10.1007/s00232-012-9520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9520-9

Keywords

Navigation