Skip to main content
Log in

Molecular-Level Characterization of Lipid Membrane Electroporation using Linearly Rising Current

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Benz R, Janko K (1976) Voltage-induced capacitance relaxation of lipid bilayer membranes: effects of membrane composition. Biochim Biophys Acta 455:721–738

    Article  PubMed  CAS  Google Scholar 

  • Bockmann RA, de Groot BL, Kakorin S et al (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an n.log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550

    Article  PubMed  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz M et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Genco I, Gliozzi A, Relini A et al (1993) Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta 1149:10–18

    Article  PubMed  CAS  Google Scholar 

  • Glaser R, Leikin S, Chernomordik L et al (1988) Reversible electrical breakdown of lipid bilayers—formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  PubMed  CAS  Google Scholar 

  • Golzio M, Teissie J, Rols M (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko A, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571

    Article  PubMed  CAS  Google Scholar 

  • Gurtovenko A, Anwar J, Vattulainen I (2010) Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem Rev 110:6077–6103

    Article  PubMed  CAS  Google Scholar 

  • Heller R, Gilbert R, Jaroszeski M (1999) Clinical applications of electrochemotherapy. Adv Drug Deliv Rev 35:119–129

    Article  PubMed  CAS  Google Scholar 

  • Henin J, Shinoda W, Klein ML (2008) United-atom acyl chains for CHARMM phospholipids. J Phys Chem B 112:7008–7015

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen W, Chandrasekhar J, Madura J et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  • Kalinowski S, Figaszewski Z (1995a) A 4-electrode system for measurement of bilayer lipid membrane capacitence. Meas Sci Technol 6:1043–1049

    Article  CAS  Google Scholar 

  • Kalinowski S, Figaszewski Z (1995b) A 4-electrode potentiostat-galvanostat for studies of bilayer lipid membranes. Meas Sci Technol 6:1050–1055

    Article  CAS  Google Scholar 

  • Kalinowski S, Ibron G, Bryl K, Figaszewski Z (1998) Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim Biophys Acta 1369:204–212

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901

    Article  PubMed  Google Scholar 

  • Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim Biophys Acta 1661:196–203

    Article  PubMed  CAS  Google Scholar 

  • Koronkiewicz S, Kalinowski S, Bryl K (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim Biophys Acta 1561:222–229

    Article  PubMed  CAS  Google Scholar 

  • Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  CAS  Google Scholar 

  • Kotnik T, Macek-Lebar A, Miklavcic D, Mir L (2000) Evaluation of cell membrane electropermeabilization by means of a nonpermeant cytotoxic agent. Biotechniques 28:921–926

    PubMed  CAS  Google Scholar 

  • Kotulska M, Koronkiewicz S, Kalinowski S (2004) Self-similar processes and flicker noise from a fluctuating nanopore in a lipid membrane. Phys Rev E 69:031920

    Article  Google Scholar 

  • Kotulska M, Kubica K, Koronkiewicz S, Kalinowski S (2007) Modeling the induction of lipid membrane electropermeabilization. Bioelectrochemistry 70:64–70

    Article  PubMed  CAS  Google Scholar 

  • Kotulska M, Basalyga J, Derylo M, Sadowski P (2010) Metastable pores at the onset of constant-current electroporation. J Membr Biol 236:37–41

    Article  PubMed  CAS  Google Scholar 

  • Kramar P, Miklavcic D, Lebar AM (2007) Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Bioelectrochemistry 70:23–27

    Article  PubMed  CAS  Google Scholar 

  • Kramar P, Miklavcic D, Lebar AM (2009) A system for the determination of planar lipid bilayer breakdown voltage and its applications. IEEE Trans Nanobiosci 8:132–138

    Article  Google Scholar 

  • Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 4:3–13

    Article  CAS  Google Scholar 

  • Melikov K, Frolov V, Shcherbakov A et al (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80:1829–1836

    Article  PubMed  CAS  Google Scholar 

  • Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization—direct access to the cytosol. Exp Cell Res 175:15–25

    Article  PubMed  CAS  Google Scholar 

  • Mir L, Orlowski S, Belehradek J et al (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207

    Article  CAS  Google Scholar 

  • Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  PubMed  CAS  Google Scholar 

  • Phillips J, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin—a mechanism to enhance transdermal drug-delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  PubMed  CAS  Google Scholar 

  • Pucihar G, Mir L, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57:167–172

    Article  PubMed  CAS  Google Scholar 

  • Rols M, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455

    PubMed  CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  PubMed  CAS  Google Scholar 

  • Tarek M, Delemotte L (2010) Electroporation of lipid membranes. In: Pakhomov A, Miklavčič D, Markov M (eds) Advanced electroporation techniques in biology and medicine. Taylor and Francis/CRC Press, Boca Raton, FL

    Google Scholar 

  • Teissie J, Rols M (1993) An experimental evaluation of the critical potential difference inducing cell-membrane electropermeabilization. Biophys J 65:409–413

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Eynard N, Gabriel B, Rols M (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Escoffre JM, Rols MP, Golzio M (2008) Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications. Radiol Oncol 42:196–206

    Article  Google Scholar 

  • Tieleman D (2004) The molecular basis of electroporation. Biophys J 86:371A–372A

    Article  Google Scholar 

  • Tieleman D, Leontiadou H, Mark A, Marrink S (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383

    Article  PubMed  CAS  Google Scholar 

  • Tien HT (1974) Bilayer lipid membranes. Marcel Dekker, New York

    Google Scholar 

  • Tuma T, Buermen Á (2009) Circuit simulation with SPICE OPUS: theory and practice. Birkhäuser, Boston

    Book  Google Scholar 

  • Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219

    Article  PubMed  CAS  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:17003

    Article  CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Beckers F, Riemann F (1976) Effects of external electrical fields on cell-membranes. Bioelectrochem Bioenerg 3:58–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by various grants from the Slovenian Research Agency and bilateral cooperation programs between Poland and Slovenia and between France and Slovenia (PROTEUS). The research was conducted in the scope of the EBAM European Associated Laboratory. Simulations were performed using HPC resources from GENCI-CINES (Grant 2010-075137). We thank A. Burmen for valuable discussion regarding SPICE modeling. M. T. acknowledges the support of the French Agence Nationale de la Recherche (Grant ANR-10_BLAN-916-03-INTCELL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mounir Tarek or Damijan Miklavčič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramar, P., Delemotte, L., Maček Lebar, A. et al. Molecular-Level Characterization of Lipid Membrane Electroporation using Linearly Rising Current. J Membrane Biol 245, 651–659 (2012). https://doi.org/10.1007/s00232-012-9487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9487-6

Keywords

Navigation