Skip to main content
Log in

The Systematic Study of the Electroporation and Electrofusion of B16-F1 and CHO Cells in Isotonic and Hypotonic Buffer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41 ± 9 % yield, while in isotonic buffer 32 ± 11 % yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1 % in isotonic buffer to 10 ± 4 % in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahkong QF, Lucy JA (1986) Osmotic forces in artificially induced cell fusion. Biochim Biophys Acta 858:206–216

    Article  PubMed  CAS  Google Scholar 

  • Barrau C, Teissie J, Gabriel B (2004) Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization. Bioelectrochemistry 63:327–332

    Article  PubMed  CAS  Google Scholar 

  • Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448

    Article  PubMed  CAS  Google Scholar 

  • Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  PubMed  CAS  Google Scholar 

  • Gabrijel M, Repnik U, Kreft M et al (2004) Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem Biophys Res Commun 314:717–723

    Article  PubMed  CAS  Google Scholar 

  • Glaser RW, Donath E (1987) Hindrance of red-cell electrofusion by the cytoskeleton. Stud Biophys 121:37–43

    CAS  Google Scholar 

  • Golzio M, Mora M-P, Raynaud C et al (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  PubMed  CAS  Google Scholar 

  • Gottesman A, Milazzo J, Lazebnik Y (2010) V-fusion: a convenient, nontoxic method for cell fusion. Biotechniques 49:747–750

    Article  PubMed  CAS  Google Scholar 

  • Hui SW, Stenger DA (1993) Electrofusion of cells: hybridoma production by electrofusion and polyethylene glycol. Methods Enzymol 220:212–227

    Article  PubMed  CAS  Google Scholar 

  • Jaroszeski MJ, Gilbert R, Heller R (1998) Flow cytometric detection and quantitation of cell–cell electrofusion products. In: Jaroszeski MJ, Heller R (eds) Flow cytometry protocols. Humana Press, New York, pp 149–156

    Google Scholar 

  • Ju J, Ko J-M, Cha H-C et al (2009) An electrofusion chip with a cell delivery system driven by surface tension. J Micromech Microeng 19:015004

    Article  Google Scholar 

  • Karsten U, Stolley P, Walther I et al (1988) Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas. Hybridoma 7:627–633

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554:479–497

    Article  PubMed  CAS  Google Scholar 

  • Klock G, Wisnewski AV, el-Bassiouni EA et al (1992) Human hybridoma generation by hypo-osmolar electrofusion: characterization of human monoclonal antibodies to Schistosoma mansoni parasite antigens. Hybridoma 11:469–481

    Article  PubMed  CAS  Google Scholar 

  • Koido S, Homma S, Hara E et al (2010) Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010:516768

    Article  PubMed  Google Scholar 

  • Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  CAS  Google Scholar 

  • Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129:551–561

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69:8536–8539

    Article  PubMed  CAS  Google Scholar 

  • McClenaghan NH (2007) Physiological regulation of the pancreatic β-cell: functional insights for understanding and therapy of diabetes. Exp Physiol 92:481–496

    Article  PubMed  CAS  Google Scholar 

  • Neil GA, Zimmermann U (1993) Electrofusion. Methods Enzymol 220:174–196

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York

    Google Scholar 

  • Perkins S, Zimmermann U, Foung SK (1991) Parameters to enhance human hybridoma formation with hypoosmolar electrofusion. Hum Antibodies Hybrid 2:155–159

    CAS  Google Scholar 

  • Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  PubMed  Google Scholar 

  • Reuss R, Ludwig J, Shirakashi R et al (2004) Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J Membr Biol 200:67–81

    Article  PubMed  CAS  Google Scholar 

  • Rols MP, Teissie J (1990) Modulation of electrically induced permeabilization and fusion of Chinese hamster ovary cells by osmotic pressure. Biochemistry 29:4561–4567

    Article  PubMed  CAS  Google Scholar 

  • Salomskaite-Davalgiene S, Cepurniene K, Satkauskas S et al (2009) Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Res 29:3125–3130

    PubMed  Google Scholar 

  • Schmitt JJ, Zimmermann U (1989) Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions. Biochim Biophys Acta 983:42–50

    Article  PubMed  CAS  Google Scholar 

  • Scott-Taylor TH, Pettengell R, Clarke I et al (2000) Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 1500:265–279

    Article  PubMed  CAS  Google Scholar 

  • Sretavan DW, Chang W, Hawkes E et al (2005) Microscale surgery on single axons. Neurosurgery 57:635–646

    Article  PubMed  Google Scholar 

  • Stenger DA, Kubiniec RT, Purucker WJ et al (1988) Optimization of electrofusion parameters for efficient production of murine hybridomas. Hybridoma 7:505–518

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Arnold WM, Zimmermann U (1993) Hypotonically induced changes in the plasma membrane of cultured mammalian cells. J Membr Biol 132:27–40

    PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Reuss R, Zimmermann D et al (2005) Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J Membr Biol 206:187–201

    Article  PubMed  CAS  Google Scholar 

  • Sukhorukov VL, Reuss R, Endter JM et al (2006) A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 346:829–839

    Article  PubMed  CAS  Google Scholar 

  • Sullivan S, Eggan K (2006) The potential of cell fusion for human therapy. Stem Cell Rev 2:341–349

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Ramos C (1998) Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes. Biophys J 74:1889–1898

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Rols MP (1986) Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun 140:258–266

    Article  PubMed  CAS  Google Scholar 

  • Toplak H, Batchiulis V, Hermetter A et al (1990) Effects of culture and incubation conditions on membrane fluidity in monolayers of cultured cells measured as fluorescence anisotropy using trimethylammoniumdiphenylhexatriene (TMA-DPH). Biochim Biophys Acta 1028:67–72

    Article  PubMed  CAS  Google Scholar 

  • Trontelj K, Rebersek M, Kanduser M et al (2008) Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells. Bioelectrochemistry 74:124–129

    Article  PubMed  CAS  Google Scholar 

  • Trontelj K, Usaj M, Miklavcic D (2010) Cell electrofusion visualized with fluorescence microscopy. J Vis Exp 41:e1991

    Google Scholar 

  • Usaj M, Trontelj K, Hudej R et al (2009) Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiol Oncol 43:108–119

    Article  Google Scholar 

  • Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16–F1) and Chinese hamster ovary (CHO) cells. J Membr Biol 236:107–116

    Article  PubMed  CAS  Google Scholar 

  • Vienken J, Zimmermann U (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett 182:278–280

    Article  PubMed  CAS  Google Scholar 

  • vor dem Esche U, Huber M, Zgaga-Griesz A et al (2011) Passive vaccination with a human monoclonal antibody: generation of antibodies and studies for efficacy in Bacillus anthracis infections. Immunobiology 216:847–853

    Article  PubMed  CAS  Google Scholar 

  • Wang H-Y, Lu C (2006) High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol Bioeng 95:1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712

    Article  PubMed  CAS  Google Scholar 

  • Yu X, McGraw PA, House FS, Crowe JE (2008) An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J Immunol Methods 336:142–151

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U, Neil GA (1996) Electromanipulation of cells. CRC Press, Boca Raton

    Google Scholar 

  • Zimmermann U, Gessner P, Schnettler R et al (1990) Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion. J Immunol Methods 134:43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Slovenian Research Agency under research programs P2-0249 and MRIC UL IP-0510. Research was conducted in the scope of the EBAM European Associated Laboratory. The authors thank Barbara Mali for her help with statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa Kanduser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usaj, M., Kanduser, M. The Systematic Study of the Electroporation and Electrofusion of B16-F1 and CHO Cells in Isotonic and Hypotonic Buffer. J Membrane Biol 245, 583–590 (2012). https://doi.org/10.1007/s00232-012-9470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9470-2

Keywords

Navigation