Skip to main content
Log in

Adhesion Signals of Phospholipid Vesicles at an Electrified Interface

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agak JO, Stoodley R, Retter U, Bizzotto D (2004) On the impendance of a lipid-modified Hg/electrolyte interface. J Electroanal Chem 562:135–144

    Article  CAS  Google Scholar 

  • Bennet MR, Gibson DF, Schwartz SM, Tait JF (1995) Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ Res 77:1136–1145

    Article  Google Scholar 

  • Bin X, Lipkowski J (2006) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup of a DMPC bilayer supported at a Au(111) electrode. J Phys Chem B 110:26430–26441

    Article  PubMed  CAS  Google Scholar 

  • Bizzotto D, Nelson A (1998) Continuing electrochemical studies of phospholipid monolayers of dioleoyl phosphatidylcholine at the mercury–electrolyte interface. Langmuir 14:6269–6273

    Article  CAS  Google Scholar 

  • Bizzotto D, Yang Y, Shepherd JL, Stoodley R, Agak J, Stauffer V, Lathuilliere M, Akhtar AS, Chung E (2004) Electrochemical and spectroelectrochemical characterization of lipid organization in an electric field. J Electroanal Chem 574:167–184

    Article  CAS  Google Scholar 

  • Brgles M, Mirosavljević K, Noethig-Laslo V, Frkanec R, Tomašić J (2007) Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies. Int J Biol Macromol 40:312–318

    Article  PubMed  CAS  Google Scholar 

  • Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, Satija S (2004) Electric field-driven transformations of a supported model biological membrane—an electrochemical and neutron reflectivity study. Biophys J 86:1763–1776

    Article  PubMed  CAS  Google Scholar 

  • Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Satija S, Majewski J (2005) Influence of the electric field on a bio-mimetic film supported on a gold electrode. Colloids Surf B 40:117–122

    Article  CAS  Google Scholar 

  • Damodaran KV, Merz KM (1994) A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J 66:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Damodoran KV, Merz KM (1993) Headgroup–water interactions in lipid bilayers: a comparison between DMPC- and DLPE-based lipid bilayers. Langmuir 9:1179–1183

    Article  Google Scholar 

  • Fowkes FM (1962) Ideal two-dimensional solutions. III. Penetration of hydrocarbons in monolayers. J Phys Chem 66:1863–1866

    Article  CAS  Google Scholar 

  • Fowkes FM (1963) Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids. J Phys Chem 67:2538–2541

    Article  CAS  Google Scholar 

  • Frkanec R, Noethig Laslo V, Vranešić B, Mirosavljević K, Tomašić J (2003) A spin labelling study of immunomodulating peptidoglycan monomer and adamantyltripeptides entrapped into liposomes. Biochim Biophys Acta 1611:187–196

    Article  PubMed  CAS  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, Heidelberg

    Google Scholar 

  • Guidelli R, Aloisi G, Becucci L, Dolfi A, Monicelli R, Buoninegni FT (2001) Bioelectrochemistry at metal–water interfaces. J Electroanal Chem 504:1–28

    Article  CAS  Google Scholar 

  • Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Hernandez VA, Thede R (2005) Kinetics of liposome adhesion on a mercury electrode. J Phys Chem B 109:14715–14726

    Article  PubMed  CAS  Google Scholar 

  • Hernandez VA, Scholz F (2006) Kinetics of the adhesion of DMPC liposomes on a mercury electrode: effect of lamellarity, phase composition, size and curvature of liposomes and presence of the pore forming peptide mastoparan X. Langmuir 22:10723–10731

    Article  PubMed  Google Scholar 

  • Israelachvili JN (1992) Intermolecular forces & surface forces. Academic Press, New York

    Google Scholar 

  • Ivošević DeNardis N, Žutić V, Svetličić V, Frkanec R, Tomašić J (2007) In situ amperometric characterization of liposome suspensions with concomitant oxygen reduction. Electroanal 19:2444–2450

    Article  Google Scholar 

  • Ivošević DeNardis N, Žutić V, Svetličić V, Frkanec R (2009) Amperometric adhesion signals of liposomes, cells and droplets. Chem Biochem Eng Q 23:87–92

    Google Scholar 

  • Ivošević DeNardis N, Ružić I, Pečar-Ilić J, El Shawish S, Ziherl P (2012) Reaction kinetics and mechanical models of liposome adhesion at charged interface. Bioelectrochemistry 88:48–56

  • Ivošević N, Žutić V (2002) Effect of electrical potential on adhesion, spreading and detachment of organic droplets at an aqueous electrolyte/metal interface. In: Mittal K (ed) Contact angle, wettability and adhesion. VSP, Zeist, pp 549–561

    Google Scholar 

  • Ivošević N, Tomaić J, Žutić V (1994) Organic droplets at an electrified interface: critical potentials of wetting measured by polarography. Langmuir 10:2415–2418

    Article  Google Scholar 

  • Ivošević N, Žutić V, Tomaić J (1999) Wetting equilibria of hydrocarbon droplets at an electrified interface. Langmuir 15:7063–7068

    Article  Google Scholar 

  • Kotyńska J, Figaszewski ZA (2005) Adsorption equilibria between liposome membrane formed phosphatidylcholine and aqueous sodium chloride solution as a function of pH. Biochim Biophys Acta 1720:22–27

    Article  PubMed  Google Scholar 

  • Lagüe P, Zuckermann MJ, Roux B (2001) Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys J 81:276–284

    Article  PubMed  Google Scholar 

  • Leermakers FAM, Nelson A (1990) Substrate-induced structural changes in electrode-adsorbed lipid layers: a self-consistent field theory. J Electroanal Chem 278:53–72

    Article  CAS  Google Scholar 

  • Moncelli MR, Becucci L, Tadini Buoninsegni F, Guidelli R (1998) Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid. Biophys J 74:2388–2397

    Article  PubMed  CAS  Google Scholar 

  • Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Rapid preparation of giant unilamellar vesicles. Proc Natl Acad Sci USA 93:11443–11447

    Article  PubMed  CAS  Google Scholar 

  • Nelson A (2010) Electrochemistry of mercury supported phospholipid monolayers and bilayers. Curr Opin Colloid Interface Sci 15:455–466

    Article  CAS  Google Scholar 

  • Nelson A, Auffret N (1988) Phospholipid monolayers of di-oleoyl lecithin at the mercury/water interface. J Electroanal Chem 244:99–113

    Article  CAS  Google Scholar 

  • Nelson A, Benton A (1986) Phospholid monolayers at the mercury/water interface. J Electroanal Chem 202:253–270

    Article  CAS  Google Scholar 

  • Nelson A, Bizzotto D (1999) Chronoamperometric study of TI(I) reduction at gramacidin-modified phospholipid-coated mercury electrodes. Langmuir 15:7031–7039

    Article  CAS  Google Scholar 

  • Nelson A, Leermakers FAM (1990) Substrate-induced structural changes in electrode-adsorbed lipid layers: experimental evidence from the behavior of phospholipid layers on the mercury–water interface. J Electroanal Chem 278:73–83

    Article  CAS  Google Scholar 

  • Ribarsky MW, Landman U (1992) Structure and dynamics of n-alkanes confined by solid surfaces. I. Stationary crystalline boundaries. J Chem Phys 97:1937–1949

    Article  CAS  Google Scholar 

  • Ružić I, Ivošević DeNardis N, Pečar-Ilić J (2009) Kinetics of the liposome adhesion on a mercury electrode: testing of a mathematical model. Int J Electrochem Sci 4:787–793

    Google Scholar 

  • Ružić I, Pečar-Ilić J, Ivošević DeNardis N (2010) Mathematical model for kinetics of organic particle adhesion at an electrified interface. J Electroanal Chem 642:120–126

    Article  Google Scholar 

  • Ryan CM, Svetličić V, Kariv-Miller E (1987) Electrogenerated R4N(Hg)5 films: stoichiometry and substituent effects. J Electroanal Chem 219:247–258

    Article  CAS  Google Scholar 

  • Sek S, Laredo T, Dutcher JR, Lipkowski J (2009) Molecular recognition imaging of an antibiotic peptide in a lipid matrix. J Am Chem Soc 131:6439–6444

    Article  PubMed  CAS  Google Scholar 

  • Stauffer V, Stoodley R, Agak JO, Bizzotto D (2001) Adsorption of DOPC onto Hg G/S interface a liposomal suspension. J Electroanal Chem 516:73–82

    Article  CAS  Google Scholar 

  • Stoodley R, Bizzotto D (2003) Epi-fluorescence microscopic characterization of potential-induced changes in a DOPC monolayer on a Hg drop. Analyst 128:552–561

    Article  PubMed  CAS  Google Scholar 

  • Svetličić V, Ivošević N, Kovač S, Žutić V (2000) Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells. Langmuir 16:8217–8220

    Article  Google Scholar 

  • Testa B, Kier LB, Carrupt PA (1997) A system approach to molecular structure, intermolecular recognition, and emergence-dissolvence in medical research. Med Res Rev 17:303–326

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen M (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  PubMed  CAS  Google Scholar 

  • Vernier PT, Ziegler MJ, Dimova R (2009) Calcium binding and headgroup dipole angle in phosphatidylserine–phosphatidylcholine bilayers. Langmuir 25:1020–1027

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Szymanski G, Lipkowski J (2004) Self-assembly of phospholipid molecules at a Au(111) electrode surface. J Am Chem Soc 126:12276–12277

    Article  PubMed  CAS  Google Scholar 

  • Yabuuchi H, O’Brien JS (1968) Positional distribution of fatty acids in glycerophosphatides of bovine grey matter. J Lipid Res 9:65–67

    PubMed  CAS  Google Scholar 

  • Zawisza I, Lachenwitzer A, Zamlynny V, Horswell SL, Goddard JD, Lipkowski J (2003) Electrochemical and photon polarization modulation infrared reflection absorption spectroscopy study of the electric field driven transformations of a phospholipid bilayer supported at a gold electrode surface. Biophys J 85:4055–4075

    Article  PubMed  CAS  Google Scholar 

  • Žutić V, Kovač S, Tomaić J, Svetličić V (1993) Heterocoalescence between dispersed organic microdroplets and a charged conductive interface. J Electroanal Chem 349:173–186

    Article  Google Scholar 

  • Žutić V, Svetličić V, Hozić Zimmermann A, Ivošević DeNardis N, Frkanec R (2007) Comment on “liposomes on a mercury electrode. effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X”. Langmuir 23:8647–8649

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Croatian Ministry of Science, Education and Sports, projects 098-0982934-2744 and 021-0212432-2431. Special thanks are due to Ivica Ružić for help with charge density calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadica Ivošević DeNardis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeNardis, N.I., Žutić, V., Svetličić, V. et al. Adhesion Signals of Phospholipid Vesicles at an Electrified Interface. J Membrane Biol 245, 573–582 (2012). https://doi.org/10.1007/s00232-012-9469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9469-8

Keywords

Navigation