Skip to main content
Log in

Chemically Modified Oligonucleotide–Increased Stability Negatively Correlates with Its Efficacy Despite Efficient Electrotransfer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Despite great potential for disease treatment, small interfering RNA (siRNA) development has been hampered due to its poor stability and the lack of efficient delivery method. To overcome the sensitivity, new generations of chemically modified oligonucleotides have been developed such as the locked nucleic acid (LNA). LNA substitution in an siRNA sequence (siLNA) is supposed to increase its stability and its affinity for its complementary sequence. The purpose of this study was to evaluate the potential benefit of an anti-GFP siLNA using the biophysical delivery method electropermeabilization. We used two types of electrical conditions: electrochemotherapy (ECT), a condition for efficient transfer of small molecules in clinics, and electrogenotherapy (EGT), a condition for efficient transfer of macromolecules. We first confirmed that siLNA was indeed more stable in mouse serum than unmodified siRNA. After determining the ECT and EGT optimal electrical parameters for a human colorectal carcinoma cell line (HCT-116) expressing eGFP, we showed that modifications of siRNA do not interfere with electrotransfer efficiency. However, despite its higher stability and its high electrotransfer efficacy, siLNA was less efficient for eGFP silencing compared to the electrotransferred, unmodified siRNA regardless of the electrical conditions used. Our study highlighted the care that is needed when designing chemically modified oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  PubMed  CAS  Google Scholar 

  • Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Babu BR, Wengel J, Kjems J (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35:5886–5897

    Article  PubMed  CAS  Google Scholar 

  • Calegari F, Haubensak W, Yang D, Huttner WB, Buchholz F (2002) Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci USA 22:14236–14240

    Article  Google Scholar 

  • Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  PubMed  CAS  Google Scholar 

  • Crinelli R, Bianchi M, Gentilini L, Magnani M (2002) Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 30:2435–2443

    Article  PubMed  CAS  Google Scholar 

  • Decuzzi P, Ferrari M (2008) The receptor-mediated endocytosis of nonspherical particles. Biophys J 94:3790–3797

    Article  PubMed  CAS  Google Scholar 

  • Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gabriel B, Teissie J (1995) Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim Biophys Acta 1266:171–178

    Article  PubMed  CAS  Google Scholar 

  • Gabriel B, Teissie J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    Article  PubMed  CAS  Google Scholar 

  • Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240

    Article  PubMed  CAS  Google Scholar 

  • Golzio M, Mazzolini L, Moller P, Rols MP, Teissie J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 12:246–251

    Article  PubMed  CAS  Google Scholar 

  • Golzio M, Mazzolini L, Ledoux A, Paganin A, Izard M, Hellaudais L, Bieth A, Pillaire MJ, Cazaux C, Hoffmann JS, Couderc B, Teissie J (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14:752–759

    Article  PubMed  CAS  Google Scholar 

  • Hu WY, Myers CP, Kilzer JM, Pfaff SL, Bushman FD (2002) Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 15:1301–1311

    Article  Google Scholar 

  • Kauppinen S, Vester B, Wengel J (2006) Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb Exp Pharmacol 173:405–422

    Article  PubMed  CAS  Google Scholar 

  • Kaur H, Babu BR, Maiti S (2007) Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem Rev 107:4672–4697

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2’-thio-LNA. Bioorg Med Chem Lett 8:2219–2222

    Article  PubMed  CAS  Google Scholar 

  • Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  PubMed  CAS  Google Scholar 

  • Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22

    Article  PubMed  CAS  Google Scholar 

  • Mir LM, Devauchelle P, Quintin-Colonna F, Delisle F, Doliger S, Fradelizi D, Belehradek J Jr, Orlowski S (1997) First clinical trial of cat soft-tissue sarcomas treatment by electrochemotherapy. Br J Cancer 76:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  PubMed  CAS  Google Scholar 

  • Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  PubMed  CAS  Google Scholar 

  • Paganin-Gioanni A, Bellard E, Couderc B, Teissie J, Golzio M (2008) Tracking in vitro and in vivo siRNA electrotransfer in tumor cells. J RNAi Gene Silenc 4:281–288

    CAS  Google Scholar 

  • Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissie J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447

    Article  PubMed  CAS  Google Scholar 

  • Pekarik V, Bourikas D, Miglino N, Joset P, Preiswerk S, Stoeckli ET (2003) Screening for gene function in chicken embryo using RNAi and electroporation. Nat Biotechnol 21:93–96

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, Rajwanshi VK, Koshkin AA, Dahl BM, Wengel J, Jacobsen JP (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13:44–53

    Article  PubMed  CAS  Google Scholar 

  • Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC (2006) In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45:10614–10623

    Article  PubMed  CAS  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  • Teissie J, Escoffre JM, Paganin A, Chabot S, Bellard E, Wasungu L, Rols MP, Golzio M (2011) Drug delivery by electropulsation: recent developments in oncology. Int J Pharm 423(1):3–6

    Article  PubMed  Google Scholar 

  • Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren K, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen MH, Wengel J (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638

    Article  PubMed  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants of the Ligue contre le Cancer, CNRS and FP7 Oncomirs (Grant 201102). Flow cytometry was performed at the TRI (funded by the region Midi-Pyrénées, the communauté du Grand Toulouse and the FEDER) platform at the IPBS. We thank Bettina Couderc (Institut National de la Santé et de la Recherche Médicale U563, Toulouse) for providing the HCT-GFP cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Golzio.

Additional information

M. Golzio and S. Chabot contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelofy, S., Teissié, J., Golzio, M. et al. Chemically Modified Oligonucleotide–Increased Stability Negatively Correlates with Its Efficacy Despite Efficient Electrotransfer. J Membrane Biol 245, 565–571 (2012). https://doi.org/10.1007/s00232-012-9468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9468-9

Keywords

Navigation