Skip to main content

Advertisement

Log in

Regulation of Connexin43 Gap Junction Protein Triggers Vascular Recovery and Healing in Human Ocular Persistent Epithelial Defect Wounds

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Transiently blocking the expression of the gap junction protein connexin43 using antisense oligodeoxynucleotides or blocking hemichannels with connexin mimetic peptides has been shown to significantly improve outcomes in a range of acute wound models. Less is known about their likely effects in nonhealing wounds. In the eye, prolonged inflammation and lack of epithelial recovery in nonhealing corneal epithelial wounds may lead to corneal opacity, blindness or enucleation. We report here the first human applications of antisense oligodeoxynucleotides that transiently block translation of connexin43 in a prospective study of five eyes with severe ocular surface burns (persistent epithelial defects), which were unresponsive to established therapy for 7 days to 8 weeks prior to treatment. Connexin43-specific antisense oligodeoxynucleotide was delivered in cold, thermoreversible Poloxamer407 gel under either an amniotic membrane graft or a bandage contact lens. The connexin43-specific antisense application reduced inflammation within 1–2 days, and in all five eyes complete and stable corneal reepithelialization was obtained. Recovery of the vascular bed and limbal reperfusion appeared to precede corneal epithelial recovery. We conclude that connexin modulation provides a number of benefits for nonhealing ocular burn wounds, one of which is to promote vascular recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Coutinho P, Qiu C, Frank S, Tamber K, Becker D (2003) Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int 27:525–541

    Article  PubMed  CAS  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Wang CM, Brown T, Green CR, Becker DL (2005) Limiting burn extension by transient inhibition of connexin43 expression at the site of injury. Br J Plastic Surg 58:658–667

    Article  CAS  Google Scholar 

  • Cronin M, Anderson PN, Green CR, Becker DL (2006) Antisense delivery and protein knockdown within the intact central nervous system. Front Biosci 11:2967–2975

    Article  PubMed  CAS  Google Scholar 

  • Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    Article  PubMed  CAS  Google Scholar 

  • Danesh-Meyer HV, Huang R, Nicholson LFB, Green CR (2008) Connexin43 antisense oligodeoxynucleotide treatment down-regulates the inflammatory response in an in vitro interphase organotypic culture model of optic nerve ischaemia. J Clin Neurosci 15:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LF, Johnson CS, Green CR (2012) Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 135:506–520

    Article  PubMed  Google Scholar 

  • Davidson JO, Green CR, Nicholson LF, O’Carroll SJ, Fraser M, Bennet L, Gunn AJ (2012) Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann Neurol 71:121–132

    Article  PubMed  CAS  Google Scholar 

  • Dovi JV, Szpaderska AM, DiPietro LA (2004) Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 92:275–280

    PubMed  CAS  Google Scholar 

  • Dua HS, Gomes JAP, Singh A (1994) Corneal wound healing. Br J Ophthalmol 78:401–408

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, King AJ, Joseph A (2001) A new classification of ocular surface burns. Br J Ophthalmol 85:1379–1383

    Article  PubMed  CAS  Google Scholar 

  • Dua HS, Miri A, Said DG (2010) Contemporary limbal stem cell transplantation—a review. Clin Exp Ophthalmol 38:104–117

    Article  Google Scholar 

  • Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A (2006) Applications of thermo-reversible Pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharmaceut Sci 9:339–358

    Google Scholar 

  • Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    Article  PubMed  CAS  Google Scholar 

  • Fernandes M, Sridhar MS, Sangwan VS, Rao GN (2005) Amniotic membrane transplantation for ocular surface. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  • Frantseva MV, Kokarovtseva L, Naus CG, Carlen PL, MacFabe D, Perez Velazquez JL (2002) Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J Neurosci 22:644–653

    PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586

    Article  PubMed  CAS  Google Scholar 

  • Gist S, Tio-Matos I, Falzgraf S, Cameron S, Beebe M (2009) Wound care in the geriatric client. Clin Interv Aging 4:269–287

    PubMed  CAS  Google Scholar 

  • Gosain A, Matthies AM, Dovi JV, Barbul A, Gamelli RL, DiPietro LA (2006) Exogenous pro-angiogenic stimuli cannot prevent physiologic vessel regression. J Surg Res 135:218–225

    Article  PubMed  CAS  Google Scholar 

  • Green CR, Law L-Y, Lin JS, Becker DL (2001) Spatiotemporal depletion of connexins using antisense oligonucleotides. In: Bruzzone R, Giaume C (eds) Methods in molecular biology. Connexin methods and protocols, vol 154. Humana Press, Totawa, pp 175–185

    Chapter  Google Scholar 

  • Grupcheva CN, Laux WT, Rupenthal ID, McGhee J, McGhee CNJ, Green CR (2012) Improved corneal wound healing through modulation of gap junction communication using connexin43-specific antisense oligodeoxynucleotides. Invest Ophthalmol Vis Sci 53:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Kalaivani M, Tandon R (2011) Comparison of prognostic value of Roper Hall and Dua classification systems in acute ocular burns. Br J Ophthalmol 95:194–198

    Article  PubMed  Google Scholar 

  • Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460:583–592

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T (2012) Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. J Neurosci 32:3333–3338

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergaard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    Article  PubMed  CAS  Google Scholar 

  • Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119:5193–5203

    Article  PubMed  CAS  Google Scholar 

  • Phillips MI, Zhang YC (1999) Basic principles of using antisense oligonucleotides in vivo. Methods Enzymol 313:46–56

    Article  Google Scholar 

  • Qiu C, Coutinho P, Frank S, Franke S, Law L-y, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Rawanduzy A, Hansen A, Hansen TW, Nedergaard M (2009) Effective reduction of infarct volume by gap junction blockade in a rodent model of stroke. J Neurosurg 87:916–920

    Google Scholar 

  • Ueno M, Lyons BL, Burzenski LM, Gott B, Shaffer DJ, Roopenian DC, Shultz LD (2005) Accelerated wound healing of alkali-burned corneas in MRL mice is associated with reduced inflammatory signature. Invest Ophthalmol Vis Sci 46:4097–4106

    Article  PubMed  Google Scholar 

  • Vuorisala S, Venermo M, Lepantalo M (2009) Treatment of diabetic foot ulcers. J Cardiovasc Surg 50:275–291

    Google Scholar 

  • Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Royal Society of New Zealand Marsden Fund and the Maurice and Phyllis Paykel Trust for characterization work with the antisense oligonucleotides. We acknowledge the Wendy and Bruce Hadden Endowment for salary support (to C.R.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ormonde, S., Chou, CY., Goold, L. et al. Regulation of Connexin43 Gap Junction Protein Triggers Vascular Recovery and Healing in Human Ocular Persistent Epithelial Defect Wounds. J Membrane Biol 245, 381–388 (2012). https://doi.org/10.1007/s00232-012-9460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9460-4

Keywords

Navigation