Skip to main content
Log in

Electric Field Exposure Triggers and Guides Formation of Pseudopod-Like Blebs in U937 Monocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We describe a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells stimulated by nanosecond pulsed electric field (nsPEF). In contrast to “regular,” round-shaped blebs, which are often seen in response to cell damage, pseudopod-like blebs (PLBs) formed as longitudinal membrane protrusions toward anode. PLB length could exceed the cell diameter in 2 min of exposure to 60-ns, 10-kV/cm pulses delivered at 10–20 Hz. Both PLBs and round-shaped nsPEF-induced blebs could be efficiently inhibited by partial isosmotic replacement of bath NaCl for a larger solute (sucrose), thereby pointing to the colloid-osmotic water uptake as the principal driving force for bleb formation. In contrast to round-shaped blebs, PLBs retracted within several minutes after exposure. Cells treated with 1 nM of the actin polymerization blocker cytochalasin D were unable to form PLBs and instead produced stationary, spherical blebs with no elongation or retraction capacity. Live cell fluorescent actin tagging showed that during elongation actin promptly entered the PLB interior, forming bleb cortex and scaffold, which was not seen in stationary blebs. Overall, PLB formation was governed by both passive (physicochemical) effects of membrane permeabilization and active cytoskeleton assembly in the living cell. To a certain extent, PLB mimics the membrane extension in the process of cell migration and can be employed as a nonchemical model for studies of cytomechanics, membrane–cytoskeleton interaction and cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • André FM, Rassokhin MA, Bowman AM, Pakhomov AG (2010) Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 79(1):95–100

    Article  PubMed  Google Scholar 

  • Barros LF, Kanaseki T, Sabirov R, Morishima S, Castro J, Bittner CX, Maeno E, Ando-Akatsuka Y, Okada Y (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10(6):687–697

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (2005) Mechanics of crawling cells. Med Eng Phys 27(9):743–753

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Luck M, Miebach T, Stelzer HK, Voth M (1990) Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J Cell Sci 96(1):171–188

    PubMed  Google Scholar 

  • Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11(5):613–627

    Article  PubMed  CAS  Google Scholar 

  • Bowman A, Nesin O, Pakhomova O, Pakhomov A (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membr Biol 236(1):15–26

    Article  PubMed  CAS  Google Scholar 

  • Charras GT (2008) A short history of blebbing. J Microsc 231(3):466–478

    Article  PubMed  CAS  Google Scholar 

  • Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435(7040):365–369

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Hu C-K, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175(3):477–490

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Mitchison TJ, Mahadevan L (2009) Animal cell hydraulics. J Cell Sci 122(18):3233–3241

    Article  PubMed  CAS  Google Scholar 

  • Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9(10):1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129(6):1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255(5042):325–327

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Schoenbach KH, Stephen Buescher E, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84(4):2709–2714

    Article  PubMed  CAS  Google Scholar 

  • Derivery E, Fink J, Martin D, Houdusse A, Piel M, Stradal TE, Louvard D, Gautreau A (2008) Free brick1 is a trimeric precursor in the assembly of a functional wave complex. PLoS ONE 3(6):e2462

    Article  PubMed  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879–884

    Article  PubMed  CAS  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615

    Article  PubMed  CAS  Google Scholar 

  • Gass GV, Chernomordik LV (1990) Reversible large-scale deformations in the membranes of electrically-treated cells: electroinduced bleb formation. Biochim Biophys Acta 1023(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277

    Article  PubMed  CAS  Google Scholar 

  • Hogue MJ (1919) The effect of hypotonic and hypertonic solutions on fibroblasts of the embryonic chick heart in vitro. J Exp Med 30(6):617–648

    Article  PubMed  CAS  Google Scholar 

  • Holtfreter J (1944) A study of the mechanics of gastrulation. J Exp Zool 95(2):171–212

    Article  Google Scholar 

  • Keller H, Eggli P (1998) Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell Motil Cytoskelet 41(2):181–193

    Article  CAS  Google Scholar 

  • Keller H, Rentsch P, Hagmann J (2002) Differences in cortical actin structure and dynamics document that different types of blebs are formed by distinct mechanisms. Exp Cell Res 277(2):161–172

    Article  PubMed  CAS  Google Scholar 

  • Kinosita K Jr, Tsong TT (1977) Hemolysis of human erythrocytes by transient electric field. Proc Natl Acad Sci USA 74(5):1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Lang TU, Khalbuss WE, Monaco SE, Michelow P, Pantanowitz L (2011) Review of HIV-related cytopathology. Pathol Res Int 2011:256083

    Google Scholar 

  • Loitto V-M, Forslund T, Sundqvist T, Magnusson K-E, Gustafsson M (2002) Neutrophil leukocyte motility requires directed water influx. J Leukocyte Biol 71(2):212–222

    PubMed  CAS  Google Scholar 

  • Maugis B, Brugues J, Nassoy P, Guillen N, Sens P, Amblard F (2010) Dynamic instability of the intracellular pressure drives bleb-based motility. J Cell Sci 123(22):3884–3892

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ, Charras GT, Mahadevan L (2008) Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19(3):215–223

    Article  PubMed  CAS  Google Scholar 

  • Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta 1808(3):792–801

    Article  PubMed  CAS  Google Scholar 

  • Norman L, Sengupta K, Aranda-Espinoza H (2011) Blebbing dynamics during endothelial cell spreading. Eur J Cell Biol 90(1):37–48

    Article  PubMed  CAS  Google Scholar 

  • Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton, pp 178–194

    Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385(2):181–186

    Article  PubMed  CAS  Google Scholar 

  • Petersen MA, Dailey ME (2004) Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 46(2):195–206

    Article  PubMed  Google Scholar 

  • Pletjushkina OJ, Rajfur Z, Pomorski P, Oliver TN, Vasiliev JM, Jacobson KA (2001) Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil Cytoskelet 48(4):235–244

    Article  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  PubMed  CAS  Google Scholar 

  • Rassokhin MA, Pakhomov AG (2010) Fast anodotropic expansion of cell membrane under exposure to high-rate nanosecond duration electric pulses (nsEP). In: The American society for cell biology 50th annual meeting, Philadelphia, PA, USA, 11–15 December 2010

  • Rassokhin MA, Pakhomov AG (2011) Cell reshaping triggered by nanosecond electric pulses (nsEP). In: 8th international bioelectrics symposium, Toulouse, France, 4–6 May 2011

  • Saulis G (1999) Cell electroporation: estimation of the number of pores and their sizes. Biomed Sci Instrum 35:291–296

    PubMed  CAS  Google Scholar 

  • Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3(4):346–352

    Article  PubMed  CAS  Google Scholar 

  • Sheth B, Banks P, Burton DR, Monk PN (1991) The regulation of actin polymerization in differentiating U937 cells correlates with increased membrane levels of the pertussis-toxin-sensitive G-protein Gi2. Biochem J 275(Pt 3):809–811

    PubMed  CAS  Google Scholar 

  • Tekle E, Wolfe MD, Oubrahim H, Chock PB (2008) Phagocytic clearance of electric field induced “apoptosis-mimetic” cells. Biochem Biophys Res Commun 376(2):256–260

    Article  PubMed  CAS  Google Scholar 

  • Tinevez J-Y, Schulze U, Salbreux G, Roensch J, Joanny J-F, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci 106(44):18581–18586

    Article  PubMed  CAS  Google Scholar 

  • Torgerson RR, McNiven MA (1998) The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing. J Cell Sci 111(19):2911–2922

    PubMed  CAS  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60(2):297–306

    Article  PubMed  CAS  Google Scholar 

  • White J, Pliquett U, Blackmore P, Joshi R, Schoenbach K, Kolb J (2011) Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields. Eur Biophys J 40(8):947–957

    Article  PubMed  Google Scholar 

  • Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS ONE 4(5):e5678

    Article  PubMed  Google Scholar 

  • Zollinger HU (1948) Cytologic studies with the phase microscope; morphologic changes associated with the death of cells in vitro and in vivo. Am J Pathol 24(5):1039–1053

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded by R01CA125482 from the National Cancer Institute and R01GM088303 from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Rassokhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassokhin, M.A., Pakhomov, A.G. Electric Field Exposure Triggers and Guides Formation of Pseudopod-Like Blebs in U937 Monocytes. J Membrane Biol 245, 521–529 (2012). https://doi.org/10.1007/s00232-012-9433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9433-7

Keywords

Navigation