Skip to main content

Advertisement

Log in

siRNA-Mediated Inhibition of Na+ K+–2Cl Cotransporter (NKCC1) and Regulatory Volume Increase in the Chondrocyte Cell Line C-20/A4

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The Na+–K+–2Cl cotransporter (NKCC1) is an essential membrane transporter and has been linked to the regulation of volume, matrix synthesis and bone growth in chondrocytes; the sole resident cell type of articular cartilage. Despite the integral nature of NKCC1, its regulation is currently poorly understood, and therefore here we describe a NKCC1 knockdown technique that will permit the easier study of this transporter. Small interfering RNA (siRNA), designed to knock down NKCC1, was transfected into the chondrocyte cell line C-20/A4 and the efficacy determined at the message, protein and functional levels. NKCC1 expression was analyzed by reverse-transcriptase polymerase chain reaction, where NKCC1 expression declined to 25.10 ± 1.08% after 12 h of transfection and did not show any rise in the following 36 h. The efficacy of the designed siRNA molecules was confirmed by both Western blot and immunocytochemistry. The effect of the knockdown on regulatory volume increase (RVI, a novel assay for NKCC1 function) was investigated by confocal laser scanning microscopy in response to a 43% hypertonic challenge, whereby control chondrocytes underwent a decrease in volume to 67.38 ± 1.70%, followed by volume restoration to 82.17 ± 2.23 at 20 min (t½ = 22.11 ± 3.23 min). Conversely, upon knockdown, chondrocytes exhibited a slower rate of RVI (t½ = 43.26 ± 5.64 min), thus suggesting that NKCC1 plays an important and yet partial role in RVI in C-20/A4 chondrocytes. Together, these data provide a robust protocol for the study of NKCC1 in chondrocytes and suggest a mechanism for C-20/A4 chondrocyte RVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambion (2006) RNAi goes genomic: elucidating gene function with siRNA libraries. www.ambion.com/techlib/webcasts/siRNA0606.pdf

  • Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN (2004) Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl cotransport, intracellular Cl and L-type Ca2+ channels. Pflugers Arch 449:42–55

    Article  PubMed  CAS  Google Scholar 

  • Bildin VN, Yang H, Crook RB, Fischbarg J, Reinach PS (2000) Adaptation by corneal epithelial cells to chronic hypertonic stress depends on upregulation of Na:K:2Cl cotransporter gene and protein expression and ion transport activity. J Membr Biol 177:41–50

    Article  PubMed  CAS  Google Scholar 

  • Bohme K, Winterhalter KH, Bruckner P (1995) Terminal differentiation of chondrocytes in culture is a spontaneous process and is arrested by transforming growth factor-beta 2 and basic fibroblast growth factor in synergy. Exp Cell Res 216:191–198

    Article  PubMed  CAS  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    Article  PubMed  CAS  Google Scholar 

  • Browning JA, Wilkins RJ (2004) Mechanisms contributing to intracellular pH homeostasis in an immortalised human chondrocyte cell line. Comp Biochem Physiol A Mol Integr Physiol 137:409–418

    Article  PubMed  CAS  Google Scholar 

  • Bush PG, Hall AC (2001) The osmotic sensitivity of isolated and in situ bovine articular chondrocytes. J Orthop Res 19:768–778

    Article  PubMed  CAS  Google Scholar 

  • Bush PG, Hall AC (2003) The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage 11:242–251

    Article  PubMed  CAS  Google Scholar 

  • Bush PG, Hall AC (2005) Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. J Cell Physiol 204:309–319

    Article  PubMed  CAS  Google Scholar 

  • Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC (2010) A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J Bone Miner Res 25:1594–1603

    Article  PubMed  CAS  Google Scholar 

  • Chee KN, Vorontsova I, Lim JC, Kistler J, Donaldson PJ (2010) Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency. Mol Vis 16:800–812

    PubMed  CAS  Google Scholar 

  • Crouch JJ, Sakaguchi N, Lytle C, Schulte BA (1997) Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem 45:773–778

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (2005) Does RNA interference have a future as a treatment for HIV-1 induced disease? AIDS Rev 7:22–25

    PubMed  Google Scholar 

  • D’Andrea L, Lytle C, Matthews JB, Hofman P, Forbush B 3rd, Madara JL (1996) Na:K:2Cl cotransporter (NKCC) of intestinal epithelial cells. Surface expression in response to cAMP. J Biol Chem 271:28969–28976

    Article  PubMed  Google Scholar 

  • DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8:309–334

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano-Oliveira C, Sirokmany G, Szaszi K, Arthur WT, Masszi A, Peterson M, Rotstein OD, Kapus A (2003) Hyperosmotic stress activates Rho: differential involvement in Rho kinase-dependent MLC phosphorylation and NKCC activation. Am J Physiol Cell Physiol 285:C555–C566

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Ernest NJ, Sontheimer H (2007) Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells. Brain Res 1144:231–238

    Article  PubMed  CAS  Google Scholar 

  • Finger F, Schorle C, Soder S, Zien A, Goldring MB, Aigner T (2004) Phenotypic characterization of human chondrocyte cell line C-20/A4: a comparison between monolayer and alginate suspension culture. Cells Tissues Organs 178:65–77

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Calderon M, Schulz A, Andreou I, Weber M, Haag R (2010) Dendritic polyglycerols with oligoamine shells show low toxicity and high siRNA transfection efficiency in vitro. Bioconjug Chem 21:1744–1752

    Article  PubMed  CAS  Google Scholar 

  • Flatman PW (2002) Regulation of Na-K-2Cl cotransport by phosphorylation and protein–protein interactions. Biochim Biophys Acta 1566:140–151

    Article  PubMed  CAS  Google Scholar 

  • Gimenez I, Forbush B (2003) Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 278:26946–26951

    Article  PubMed  CAS  Google Scholar 

  • Gosmanov AR, Thomason DB (2003) Regulation of Na+-K+-2Cl cotransporter activity in rat skeletal muscle and intestinal epithelial cells. Tsitologiia 45:812–816

    PubMed  CAS  Google Scholar 

  • Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteo-arthritis—a comparison between the processes of aging and degeneration in human hip cartilage. Connect Tissue Res 19:149–176

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Jones WR, Ting-Beall HP, Lee GM (1999) The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage 7:59–70

    Article  PubMed  CAS  Google Scholar 

  • Hopewell B, Urban JP (2003) Adaptation of articular chondrocytes to changes in osmolality. Biorheology 40:73–77

    PubMed  CAS  Google Scholar 

  • Iwamoto LM, Nakamura KT, Wada RK (2003) Immunolocalization of a Na-K-2Cl cotransporter in human tracheobronchial smooth muscle. J Appl Physiol 94:1596–1601

    PubMed  CAS  Google Scholar 

  • Iwamoto LM, Fujiwara N, Nakamura KT, Wada RK (2004) Na-K-2Cl cotransporter inhibition impairs human lung cellular proliferation. Am J Physiol Lung Cell Mol Physiol 287:L510–L514

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B III, Reddy PV, Norenberg MD (2008) Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874–33882

    Google Scholar 

  • Kahle KT, Rinehart J, Lifton RP (2010) Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta 1802:1150–1158

    PubMed  CAS  Google Scholar 

  • Kerrigan MJ, Hall AC (2008) Control of chondrocyte regulatory volume decrease (RVD) by [Ca2+]i and cell shape. Osteoarthritis Cartilage 16:312–322

    Article  PubMed  CAS  Google Scholar 

  • Kerrigan MJ, Hook CS, Qusous A, Hall AC (2006) Regulatory volume increase (RVI) by in situ and isolated bovine articular chondrocytes. J Cell Physiol 209:481–492

    Article  PubMed  CAS  Google Scholar 

  • Kiang AS, Palfi A, Ader M, Kenna PF, Millington-Ward S, Clark G, Kennan A, O’Reilly M, Tam LC, Aherne A, McNally N, Humphries P, Farrar GJ (2005) Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol Ther 12:555–561

    Article  PubMed  CAS  Google Scholar 

  • Kristensen K, Berenbrink M, Koldkjaer P, Abe A, Wang T (2008) Minimal volume regulation after shrinkage of red blood cells from five species of reptiles. Comp Biochem Physiol A Mol Integr Physiol 150:46–51

    Article  PubMed  Google Scholar 

  • Kuang K, Li Y, Wen Q, Wang Z, Li J, Yang Y, Iserovich P, Reinach PS, Sparrow J, Diecke FP, Fischbarg J (2001) Corneal endothelial NKCC: molecular identification, location, and contribution to fluid transport. Am J Physiol Cell Physiol 280:C491–C499

    PubMed  CAS  Google Scholar 

  • Lionetto MG, Pedersen SF, Hoffmann EK, Giordano ME, Schettino T (2002) Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium. Cell Physiol Biochem 12:163–178

    Article  PubMed  CAS  Google Scholar 

  • Lytle C, Forbush B 3rd (1992) The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem 267:25438–25443

    PubMed  CAS  Google Scholar 

  • Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd (1995) Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol Cell Physiol 269:C1496–C1505

    CAS  Google Scholar 

  • Melrose J, Smith SM, Smith MM, Little CB (2008) The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech Histochem 83:47–53

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell ME (1993) Role of Na-K-Cl cotransport in vascular endothelial cell volume regulation. Am J Physiol Cell Physiol 264:C1316–C1326

    Google Scholar 

  • Ong SB, Shah D, Qusous A, Jarvis SM, Kerrigan MJ (2010) Stimulation of regulatory volume increase (RVI) in avian articular chondrocytes by gadolinium chloride. Biochem Cell Biol 88:505–512

    Article  PubMed  CAS  Google Scholar 

  • Price NT, Jackson VN, Halestrap AP (1998) Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 329(Pt 2):321–328

    PubMed  CAS  Google Scholar 

  • Qusous A, Hook C, McRobb L, Kerrigan MJP (2006) siRNA mediated inhibition of regulatory volume increase (RVI) in the chondrocyte cell line C-20/A4. In: Orthopaedic Research Society (ORS) Transactions. ORS, Chicago, p 0291

  • Qusous A, Kaneva M, Getting SJ, Kerrigan MJP (2010) A13/BACII, a novel bovine chondrocytic cell line with differentiation potential. Paper presented at the 2010 Combined Meeting of Orthopaedic Research Societies (CORS), Kyoto, October 16 (Sat.)–20 (Wed.), 2010.

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  PubMed  CAS  Google Scholar 

  • Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jimenez SA (2002) Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum 46:404–419

    Article  PubMed  CAS  Google Scholar 

  • Trujillo E, Alvarez de la Rosa D, Mobasheri A, Avila J, Gonzalez T, Martin-Vasallo P (1999a). Sodium transport systems in human chondrocytes. I. Morphological and functional expression of the Na+,K(+)-ATPase alpha and beta subunit isoforms in healthy and arthritic chondrocytes. Histol Histopathol 14:1011–1022

    Google Scholar 

  • Trujillo E, Alvarez de la Rosa D, Mobasheri A, Gonzalez T, Canessa CM, Martin-Vasallo P (1999b) Sodium transport systems in human chondrocytes II. Expression of ENaC, Na+/K+/2Cl cotransporter and Na+/H+ exchangers in healthy and arthritic chondrocytes. Histol Histopathol 14:1023–1031

    PubMed  CAS  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  PubMed  CAS  Google Scholar 

  • Urban JP, Hall AC, Gehl KA (1993) Regulation of matrix synthesis rates by the ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154:262–270

    Article  PubMed  CAS  Google Scholar 

  • van der Windt AE, Haak E, Das RH, Kops N, Welting TJ, Caron MM, van Til NP, Verhaar JA, Weinans H, Jahr H (2010) Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated T-cells 5 in vitro. Arthritis Res Ther 12:R100

    PubMed  Google Scholar 

  • Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20:7657–7663

    PubMed  CAS  Google Scholar 

  • Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222

    Article  PubMed  Google Scholar 

  • Wang TY, Feng SQ, Zhang ZX, Shi XD, Liu R, Liu ZQ (2010) Suppression of survivin gene in leukemia cells by small interfering RNA [in Chinese]. Zhonghua Er Ke Za Zhi 48:843–847

    PubMed  Google Scholar 

  • Wenke AK, Grassel S, Moser M, Bosserhoff AK (2009) The cartilage-specific transcription factor Sox9 regulates AP-2epsilon expression in chondrocytes. FEBS J 276:2494–2504

    Article  PubMed  CAS  Google Scholar 

  • Xu JC, Lytle C, Zhu TT, Payne JA, Benz E Jr, Forbush B 3rd (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA 91:2201–2205

    Article  PubMed  CAS  Google Scholar 

  • Ye D, Zhang HF, Zhu LY, Wang LW, Chen LX (2011) ClC-3 siRNA inhibits regulatory volume decrease in nasopharyngeal carcinoma cells [in Chinese]. Nan Fang Yi Ke Da Xue Xue Bao 31:216–220

    PubMed  CAS  Google Scholar 

  • Yellowley CE, Jacobs CR, Li Z, Zhou Z, Donahue HJ (1997) Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am J Physiol Cell Physiol 273:C30–C36

    CAS  Google Scholar 

  • Zhao H, Hyde R, Hundal HS (2004) Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells. J Physiol 560:123–136

    Article  PubMed  CAS  Google Scholar 

  • Zhao GQ, Du ZD, Liang T, Liu JW, Zhang LN, Zhang ZH (2008) RNA interference inhibits expression of cyclooxygenase-2 and matrix metalloproteinase-2 in rabbit corneal stromal cells [in Chinese]. Zhonghua Yan Ke Za Zhi 44:831–838

    PubMed  CAS  Google Scholar 

  • Zhou HW, Lou SQ, Zhang K (2004) Recovery of function in osteoarthritic chondrocytes induced by p16INK4a-specific siRNA in vitro. Rheumatology (Oxford) 43:555–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ian Locke for donating C-20/A4 chondrocytes, Dr. Peter Flatman for the initial sample of T4 antibodies and Dr. Sanjiv Rughooputh for his assistance and feedback. This work was partly funded by the Wellcome Trust and made possible thanks to Mr. Aiman T. Qusous and Ms. Najda Goussous. T4 antibody (contribution of Lytle and Forbush III) was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology (Iowa City, IA 52242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. P. Kerrigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qusous, A., Geewan, C.S.V., Greenwell, P. et al. siRNA-Mediated Inhibition of Na+ K+–2Cl Cotransporter (NKCC1) and Regulatory Volume Increase in the Chondrocyte Cell Line C-20/A4. J Membrane Biol 243, 25 (2011). https://doi.org/10.1007/s00232-011-9389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00232-011-9389-z

Keywords

Navigation