Skip to main content

Advertisement

Log in

Synergic Effects of β-Estradiol and Erythromycin on hERG Currents

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The incidence rates of long QT syndrome (LQTS) and drug-induced torsades de pointes (TDP) are higher in women than men. Although gonadal steroids are assumed to play an important role in the gender-based differences in cardiac electrophysiological properties, the underlying mechanisms of the gender-based differences are not fully understood. In particular I Kr, which comprises the repolarization phase of the action potential, has not been well understood in its modulation by sex hormones. To assess this, we examined the effects of the female sex hormone β-estradiol on the human ether-a-go-go-related gene (hERG)-encoded potassium current stably expressed in human embryonic kidney-293 (HEK) cells. We demonstrated that hERG currents were inhibited by β-estradiol maximally to 62% of control with an IC50 of 1.3 μM and a Hill coefficient of 0.87, which might account for the sex-related differences in LQTS. We also examined whether estrogen modulated drug-induced blocking effects on hERG currents or not. With simultaneous application of 10 μM erythromycin, which is known to block hERG currents but not in low doses, the blocking effects of β-estradiol on hERG currents were enhanced. Namely, hERG currents were inhibited maximally to 45.8% of control with an IC50 of 59 nM (P < 0.02) by β-estradiol with 10 μM erythromycin. We conclude here that a significant block of hERG currents by β-estradiol may account for the sex-related differences in LQTS and the synergic effects of β-estradiol and erythromycin indicate a higher risk of drug-induced TDP in women than men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abriel H, Schlapfera J, Keller DI et al (2004) Molecular and clinical determinants of drug-induced long QT syndrome: an iatrogenic channelopathy. Swiss Med Wkly 134:685–694

    PubMed  CAS  Google Scholar 

  • Bai CX, Kurokawa J, Tamagawa M et al (2005) Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation 112:1701–1710

    Article  PubMed  CAS  Google Scholar 

  • Brouillette J, Rivard K, Lizotte E et al (2005) Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. Cardiovasc Res 65:148–157

    Article  PubMed  CAS  Google Scholar 

  • Coker S (2008) Drugs for men and women—how important is gender as a risk factor for TdP? Pharmacol Ther 119:186–194

    Article  PubMed  CAS  Google Scholar 

  • Cupples AL, Gagnon DR, Kannel WB (1992) Long- and short-term risk of sudden coronary death. Circulation 85:11–18

    Google Scholar 

  • Drici MD, Knollmann BC, Wang WX et al (1998) Cardiac actions of erythromycin: influence of female sex. JAMA 280(20):1774–1776

    Article  PubMed  CAS  Google Scholar 

  • Du XJ, Fang L, Kiriazis H (2006) Sex dimorphism in cardiac pathophysiology: experimental findings, hormonal mechanisms, and molecular mechanisms. Pharmacol Ther 111:434–475

    Article  PubMed  CAS  Google Scholar 

  • Finlayson K, Witchel HJ, McCulloch J, Sharkey J (2004) Acquired QT interval prolongation and hERG: implications for drug discovery and development. Eur J Pharmacol 500:129–142

    Article  PubMed  CAS  Google Scholar 

  • Hancox JC, McPate MJ, Harchi AE et al (2008) The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther 119:118–132

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Danilo P Jr, Rosen MR (1998) Effects of gonadal steroids on ventricular repolarization and on the response to E4031. J Pharmacol Exp Ther 285:1068–1072

    PubMed  CAS  Google Scholar 

  • Himmel HM (2007) Suitability of commonly used excipients for electrophysiological in-vitro safety pharmacology assessment of effects on hERG potassium current and on rabbit Purkinje fiber action potential. J Pharmacol Toxicol Methods 56:145–158

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu M, Wu LM, Hirano Y, Kawano S, Furukawa T, Hiraoka M (2004) Block of Herg current expressed in HEK293 cells by the Na-channel blocker cibenzoline. Heart Vessels 19:137–143

    Article  PubMed  Google Scholar 

  • Hreiche R, Morissette P, Turgeon J (2008) Drug-induced long QT syndrome in women: review of current evidence and remaining gaps. Gend Med 5:124–135

    Article  PubMed  Google Scholar 

  • James AF, Choisy SCM, Hancox JC (2007) Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol 94:265–319

    Article  PubMed  Google Scholar 

  • Kawano S, Otsu K, Shoji S et al (2003) Ca2+ oscillations regulated by Na+–Ca2+ exchanger and plasma membrane Ca2+ pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium 34:145–156

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa J, Tamagawa M, Harada N, Honda S, Bai CX, Nakaya H, Furukawa T (2008) Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol 586:2961–2973

    Article  PubMed  CAS  Google Scholar 

  • Lehmann MH, Hardy S, Archibald D (1996) Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation 94:2535–2541

    PubMed  CAS  Google Scholar 

  • Makkar RR, Fromm BS, Steinman RT et al (1993) Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270:2590–2597

    Article  PubMed  CAS  Google Scholar 

  • Nattel S, Ranger S, Talajic MA (1990) Erythromycin-induced long QT syndrome: concordance with quinidine and underlying cellular electrophysiologic mechanism. J Med 89(2):235–238

    Article  CAS  Google Scholar 

  • Pham TV, Rosen MR (2002) Sex, hormones, and repolarization. Cardiovasc Res 53:740–751

    Article  PubMed  CAS  Google Scholar 

  • Pham TV, Sosunov EA, Anyukhovsky EP et al (2002) Testosterone diminishes the proarrhythmic effects of dofetilide in normal female rabbits. Circulation 106:2132–2136

    Article  PubMed  CAS  Google Scholar 

  • Saba S, Zhu W, Aronovitz MJ et al (2002) Effects of estrogen on cardiac electrophysiology in female mice. J Cardiovasc Electrophysiol 13:276–280

    Article  PubMed  Google Scholar 

  • Sanguinetti MC, Mitcheson JS (2005) Predicting drug–hERG channel interactions that cause acquired long QT syndrome. Trends Pharmacol Sci 26:119–124

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  PubMed  CAS  Google Scholar 

  • Sasano T, Ueda K, Orikabe M, Hirano Y, Kawano S, Yasunami M, Isobe M, Kimura A, Hiraoka M (2004) Novel C-terminus frameshift mutation, 1122fs/147, of HERG in LQT2: additional amino acids generated by frameshift cause accelerated inactivation. J Mol Cell Cardiol 37:1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Scholz EP, Zitron E, Kiesecker C (2005) Inhibition of cardiac hERG channels by grapefruit flavonoid naringenin: implications for the influence of dietary compounds on cardiac repolarisation. Naunyn Schmiedebergs Arch Pharmacol 371(6):516–525

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Hata T, Hiraoka M (1999) Effects of estrogen on action potential and membrane currents in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 277:826–833

    Google Scholar 

  • Thomas D, Hammerling BC, Wu K (2004) Inhibition of cardiac hERG currents by the DNA topoisomerase II inhibitor amsacrine: mode of action. Br J Pharmacol 142:485–494

    Article  PubMed  CAS  Google Scholar 

  • Trepanier-Boulay V, St-Michel C, Tremblay A et al (2001) Gender-based differences in cardiac repolarization in mouse ventricle. Circ Res 89:437–444

    Article  PubMed  CAS  Google Scholar 

  • Volberg WA, Koci BJ, Su W et al (2002) Blockade of human cardiac potassium channel human ether-a-go-go-related gene (hERG) by macrolide antibiotics. J Pharmacol Exp Ther 302:320–327

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Anderson ME (2002) Reduced repolarization reserve in ventricular myocytes from female mice. Cardiovasc Res 53:763–769

    Article  PubMed  CAS  Google Scholar 

  • Wu LM, Orikabe M, Hirano Y, Kawano S, Hiraoka M (2003) Effects of Na+ channel blocker, pilsicainide, on HERG current expressed in HEK-293 cells. J Cardiovasc Pharmacol 42:410–418

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Gong Q, Ye B et al (1998) Properties of hERG channels stably expressed in HEK293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  PubMed  CAS  Google Scholar 

  • Zitron E, Scholz E, Owen RW et al (2005) QTc prolongation by grapefruit juice and its potential pharmacological basis: hERG channel blockade by flavonoids. Circulation 111(7):835–838

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiko Kawano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, F., Kuruma, A. & Kawano, S. Synergic Effects of β-Estradiol and Erythromycin on hERG Currents. J Membrane Biol 241, 31–38 (2011). https://doi.org/10.1007/s00232-011-9360-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9360-z

Keywords

Navigation