Skip to main content
Log in

Chronopotentiometric Technique as a Method for Electrical Characterization of Bilayer Lipid Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The basic electrical parameters of bilayer lipid membranes are capacitance and resistance. This article describes the application of chronopotentiometry to the research of lipid bilayers. Membranes were made from egg yolk phosphatidylcholine. The chronopotentiometric characteristic of the membranes depends on the current value. For low current values, no electroporation takes place and the voltage rises exponentially to a constant value. Based on these kinds of chronopotentiometric curves, a method of the membrane capacitance and the membrane resistance calculations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Romanowski S, Gassa LM, Vilche JR (1995) An investigation by EIS of gramicidin channels in bilayer lipid membranes. Electrochim Acta 40:1561–1567

    Article  CAS  Google Scholar 

  • Alvarez O, Brodwick M, Latorre R et al (1983) Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. Biophys J 44:333–342

    Article  PubMed  CAS  Google Scholar 

  • Andersen OS (1984) Gramicidin channels. Annu Rev Physiol 46:531–548

    Article  PubMed  CAS  Google Scholar 

  • Benz R, Fröhlich O, Läuger P et al (1975) Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim Biophys Acta 374:323–334

    Google Scholar 

  • Bronsztejn IN, Siemiendiajew KA (1996) Mathematics, The encyclopedic handbook. Polish Scientific Publishers, Warsaw

    Google Scholar 

  • Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444

    Article  CAS  Google Scholar 

  • Cherny VV, Sokolov VS, Abidor IG (1980) Determination of surface charge of bilayer lipid membranes. Bioelectrochem Bioenerget 7:413–420

    Article  Google Scholar 

  • Coster HGL (2003) Dielectric and electrical properties of lipid bilayers in relation to their structure. In: Tien HT, Ottova-Leitmannova Liu A (eds) Planar lipid bilayers (BLMs) and their applications. Elsevier, Amsterdam, pp 75–108

    Google Scholar 

  • Disalvo EA, Simon SA (eds) (1995) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, FL

    Google Scholar 

  • Feldberg SW, Kissel G (1975) Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers. J Membr Biol 20:269–300

    Article  PubMed  CAS  Google Scholar 

  • Figaszewski Z (1982) System for measuring separate impedance characteristics with a three or four-electrode potentiostat. J Electroanal Chem 139:309–315

    Article  CAS  Google Scholar 

  • Figaszewski Z, Koczorowski Z, Geblewicz G (1982) System for electrochemical studies with a four-electrode potentiostat. J Electroanal Chem 139:317–322

    Article  CAS  Google Scholar 

  • Galluci E, Micelli S, Monticelli G (1996) Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. Biophys J 71:824–831

    Article  Google Scholar 

  • Genco I, Gliozzi A, Relini A et al (1993) Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta 1149:10–18

    Article  PubMed  CAS  Google Scholar 

  • Helm CA, Knoll W, Israelachvili JN (1991) Measurement of ligand-receptor interactions. Proc Natl Acad Sci USA 88:8169–8173

    Article  PubMed  CAS  Google Scholar 

  • Hianik T, Passechnik VI (1995) Bilayer lipid membranes: structure and mechanical properties. Kluwer Academic, Dordrecht

    Google Scholar 

  • Iglic A (ed) (2010) Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam

    Google Scholar 

  • Jain MK (1972) The biomolecular lipid membrane. Litton Educational Publishing, New York

    Google Scholar 

  • Kalinowski S, Figaszewski Z (1992) A new system for bilayer lipid membrane capacitance measurements: method, apparatus and applications. Biochim Biophys Acta 1112:57–66

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski S, Ibron G, Bryl K et al (1998) Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim Biophys Acta 1369:204–212

    Article  PubMed  CAS  Google Scholar 

  • Karolins C, Coster HGL, Chilcott TC et al (1998) Differential effects of cholesterol and oxidized-cholesterol in egg lecithin bilayers. Biochim Biophys Acta 1368:247–255

    Article  Google Scholar 

  • Katsaras J, Gutberlet T (2001) Lipid bilayers: structure and interactions. Springer-Verlag, Berlin

    Google Scholar 

  • Koronkiewicz S, Bryl K (1999) Cholesterol-induced variations in fluctuations of the pores in bilayer lipid membrane. Cell Mol Biol Lett 4:567–582

    CAS  Google Scholar 

  • Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membrane: chronopotentiometric studies. Biochim Biophys Acta 1661:196–203

    Article  PubMed  CAS  Google Scholar 

  • Koronkiewicz S, Bryl K, Witkowski S et al (1999) Changes of structural and dynamic properties of model lipid membranes induced by tocopherols. Nat Sci 3:20–33

    Google Scholar 

  • Koronkiewicz S, Kalinowski S, Bryl K (2001) Changes of structural and dynamic properties of model lipid membranes induced by alfa-tocopherol: implication to the membrane stabilization under external electric field. Biochim Biophys Acta 1510:300–306

    Article  PubMed  CAS  Google Scholar 

  • Koronkiewicz S, Kalinowski S, Bryl K (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim Biophys Acta 1561:222–229

    Article  PubMed  CAS  Google Scholar 

  • Nakashima N, Nakano K, Ihara T et al (1989) Potential use of synthetic molecular bilayer films as chemical sensing materials: application to humidity sensors. J Mater Sci Lett 8:387–388

    Article  CAS  Google Scholar 

  • Naumowicz M, Figaszewski ZA (2003) Impedance analysis of phosphatidylcholine membranes modified with gramicidin D. Bioelectrochemistry 61:21–27

    Article  PubMed  CAS  Google Scholar 

  • Naumowicz M, Figaszewski ZA (2005) Impedance analysis of lipid domains in phosphatidylcholine bilayer membranes containing ergosterol. Biophys J 89:3173–3182

    Article  Google Scholar 

  • Naumowicz M, Figaszewski ZA (2009) Impedance spectroscopic investigation of the bilayer lipid membranes formed from the phosphatidylserine–ceramide mixture. J Membr Biol 227:67–75

    Article  PubMed  CAS  Google Scholar 

  • Naumowicz M, Petelska AD, Figaszewski ZA (2003) Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cell Mol Biol Lett 8:5–18

    PubMed  CAS  Google Scholar 

  • Pavlin M, Kotnik T, Miklavčič D et al (2008) Electroporation of planar lipid bilayers and membranes. In: Leitmannova Liu A (ed) Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam, pp 165–226

    Google Scholar 

  • Petelska AD, Naumowicz M, Figaszewski ZA (2006) Physicochemical insights into equilibria in bilayer lipid membranes. In: Tien HT, Ottova A (eds) Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam, pp 125–187

    Chapter  Google Scholar 

  • Robello M, Gliozzi A (1989) Conductance transition induced by an electric field in lipid bilayers. Biochim Biophys Acta 982:173–176

    Article  PubMed  CAS  Google Scholar 

  • Sargent DF, Hianik T (1994) Comparative analysis of the methods for measurement of membrane surface potential of planar lipid bilayers. Bioelectrochem Bioenerget 33:11–18

    Article  CAS  Google Scholar 

  • Schoch P, Sargent DF, Schwyzer R (1979) Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes. J Membr Biol 46:71–89

    Article  PubMed  CAS  Google Scholar 

  • Smondyrev AM, Berkowitz ML (2001) Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. Biophys J 80:1649–1658

    Article  PubMed  CAS  Google Scholar 

  • Stelzle M, Weissműller G, Sackmann E (1993) On the application of supported bilayers as receptive layers for biosensors with electrical detection. J Phys Chem 97:2974–2981

    Article  CAS  Google Scholar 

  • Stern J, Freisleben HJ, Janku S et al (1992) Black lipid membranes of tetraether lipids from Thermoplasma acidophilum. Biochim Biophys Acta 1128:227–236

    PubMed  CAS  Google Scholar 

  • Tien HT (1974) Bilayer lipid membrane: theory and practice. Marcel Dekker, New York

    Google Scholar 

  • Tien HT, Ottova-Leitmannova A (eds) (2003a) Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam

    Google Scholar 

  • Tien HT, Ottova-Leitmannova A (eds) (2003b) Planar lipid bilayers (BLMs) and their applications. Elsevier, Amsterdam

    Google Scholar 

  • Urry DW, Goodall MC, Glickson JD et al (1971) The gramicidin A transmembrane channel. Characteristics of head-to-head dimerized p(L, D) helices. Proc Natl Acad Sci USA 8:1907–1911

    Article  Google Scholar 

  • Walz D, Teissié J, Milazzo G (eds) (2004) Bioelectrochemistry of membranes. Birkhauser, Basel

    Google Scholar 

  • White SH (1970) A study of lipid bilayer membrane stability using precise measurements of specific capacitance. Biophys J 10:1127–1148

    Article  PubMed  CAS  Google Scholar 

  • Ziegler W, Gaburjakova J, Gaburjakova M et al (1998) Agar-supported lipid bilayers—basic structures for biosensor design. Electrical and mechanical properties. Colloids Surf A Physicochem Eng Aspects 140:357–367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kazimierz Wojtulewski, MEng, is thanked for his valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Naumowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumowicz, M., Figaszewski, Z.A. Chronopotentiometric Technique as a Method for Electrical Characterization of Bilayer Lipid Membranes. J Membrane Biol 240, 47–53 (2011). https://doi.org/10.1007/s00232-011-9341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9341-2

Keywords

Navigation