Skip to main content
Log in

First-Leaflet Phase Effect on Properties of Phospholipid Bilayer Formed Through Vesicle Adsorption on LB Monolayer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Phospholipid bilayers were formed on mica using the Langmuir–Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin–Landau–Verwey–Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bagatolli LA, Gratton E (2000) A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys J 79:434–447

    Article  CAS  PubMed  Google Scholar 

  • Beech B, Smith JR, Steele AA, Penegar I, Campbell SA (2002) The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Colloids Surf B 23:231–247

    Article  CAS  Google Scholar 

  • Biggs S (1995) Steric and bridging forces between surfaces fearing adsorbed polymer—an atomic-force microscopy study. Langmuir 11:156–162

    Article  CAS  Google Scholar 

  • Boon JM, Smith BD (2002a) Synthetic membrane transporters. Curr Opin Chem Biol 6:749–756

    Article  CAS  PubMed  Google Scholar 

  • Boon JM, Smith BD (2002b) Chemical control of phospholipid distribution across bilayer membranes. Med Res Rev 22:251–281

    Article  CAS  PubMed  Google Scholar 

  • Boxer SG (2000) Molecular transport and organization in supported lipid membranes. Curr Opin Chem Biol 4:704–709

    Article  CAS  PubMed  Google Scholar 

  • Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T-cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  • Butt H-J, Franz V (2002) Rupture of molecular thin films observed in atomic force microscopy. I. Theory. Phys Rev E 66:031601

    Article  Google Scholar 

  • Cappella B, Dietler G (1999) Force–distance curves by atomic force microscopy. Surf Sci Rep 34:1–104

    Article  CAS  Google Scholar 

  • Chan DYC, Pashley RM, White LR (1980) A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte. J Colloid Interface Sci 77:283–285

    Article  CAS  Google Scholar 

  • De Almeida RFM, Loura LMS, Fedorov A, Prieto M (2002) Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer. Biophys J 82:823–834

    Article  PubMed  Google Scholar 

  • Derjaguin BV (1934) Analysis of friction and adhesion IV. The theory of the adhesion of small particles. Kolloid Z 69:155–164

    Article  Google Scholar 

  • Derjaguin BV (1940) On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols. Trans Faraday Soc 36:203–211

    Article  Google Scholar 

  • Devaux PF, Morris R (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5:241–246

    Article  CAS  PubMed  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  PubMed  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1992) Measurement of forces in liquids using a force microscope. Langmuir 8:1831–1836

    Article  CAS  Google Scholar 

  • Engler AJ, Richert L, Wong JY, Picart C, Discher DE (2004) Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf Sci 570:142–154

    Article  CAS  Google Scholar 

  • Fang HH, Chan PK-Y, Xu L-C (2000) Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Methods 40:89–97

    Article  CAS  PubMed  Google Scholar 

  • Franz V, Loi S, Muller H, Bamberg E, Butt H-J (2002) Tip penetration through lipid bilayers in atomic force microscopy. Colloids Surf B 23:191–200

    Article  CAS  Google Scholar 

  • Garcia-Manyes S, Oncins G, Sanz F (2005) Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys J 89:1812–1826

    Article  CAS  PubMed  Google Scholar 

  • Giesen PL, Willems GM, Hemker HC, Hermens WT (1991) Membrane-mediated assembly of the prothrombinase complex. J Biol Chem 266:18720–18725

    CAS  PubMed  Google Scholar 

  • Hartmann U (1991) Van der Waals interactions between sharp probes and flat sample surfaces. Phys Rev B 43:2404–2407

    Article  Google Scholar 

  • Hogg R, Healy TW, Fuersten DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651

    Article  CAS  Google Scholar 

  • Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408

    Article  CAS  Google Scholar 

  • Hunter RJ (1987) Foundations of colloid science. Oxford University Press, Oxford

    Google Scholar 

  • Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, New York

    Google Scholar 

  • Israelachvili JN, Adams GE (1978) Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 nm. J Chem Soc Faraday Trans 74:975–1001

    Article  CAS  Google Scholar 

  • Loi S, Sun G, Franz V, Butt H-J (2002) Rupture of molecular thin films observed in atomic force microscopy. II. Experiment. Phys Rev E 66:031602

    Article  Google Scholar 

  • Marra J, Israelachvili JN (1985) Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous-electrolyte solutions. Biochemistry 24:4608–4618

    Article  CAS  PubMed  Google Scholar 

  • McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell–cell recognition in the immune system. Biochim Biophys Acta 864:95–106

    CAS  PubMed  Google Scholar 

  • Miszta A, Machan R, Benda A, Ouellette AJ, Hermens WT, Hof M (2008) Combination of ellipsometry, laser scanning microscopy and Z-scan fluorescence correlation spectroscopy elucidating interaction of cryptdin-4 with supported phospholipid bilayers. J Pept Sci 14:503–509

    Article  CAS  PubMed  Google Scholar 

  • Mou JX, Yang J, Huang C, Shao Z (1994) Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry 33:9981–9985

    Article  CAS  PubMed  Google Scholar 

  • O’Shea SJ, Welland ME, Pethica JB (1994) Atomic-force microscopy of local compliance at solid–liquid interfaces. Chem Phys Lett 223:336–340

    Article  Google Scholar 

  • Park J-W (2007) Nanoliter reactor arrays for antibiotic study. Bull Korean Chem Soc 28:1709–1714

    Article  CAS  Google Scholar 

  • Park J-W, Ahn DJ (2008) Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers. Colloids Surf B 62:157–161

    Article  CAS  Google Scholar 

  • Park J-W, Lee GU (2006) Properties of mixed lipid monolayers assembled on hydrophobic surfaces through vesicle adsorption. Langmuir 22:5057–5063

    Article  CAS  PubMed  Google Scholar 

  • Parker JL (1994) Surface force measurements in surfactant systems. Prog Surf Sci 3:205–271

    Article  Google Scholar 

  • Parker JL, Christenson HK (1988) Measurements of the forces between a metal-surface and mica across liquids. J Chem Phys 88:8013–8014

    Article  CAS  Google Scholar 

  • Rinia HA, Snel MME, van dern Eerden JPJM, de Kruijff B (2001) Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett 501:92–96

    Article  CAS  PubMed  Google Scholar 

  • Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  CAS  PubMed  Google Scholar 

  • Senden TJ, Drummond CJ, Kékicheff P (1994) Atomic-force microscopy—imaging with electrical double-layer interactions. Langmuir 10:358–362

    Article  CAS  Google Scholar 

  • Shuin V, Kekicheff P (1993) Electrical double-layer structure revisited via a surface force apparatus—mica interfaces in lithium-nitrate solutions. J Colloid Interface Sci 155:108–123

    Article  Google Scholar 

  • Tokumasu F, Jin AJ, Feigenson GW, Dvorak JA (2003) Characterization of micro-domain structure in ROS disk model membranes using differential scanning calorimetry and atomic force microscopy. Biophys J 84:2609–2618

    Article  CAS  PubMed  Google Scholar 

  • Van der Vegte EW, Hadziioannou G (1997) Scanning force microscopy with chemical specificity: an extensive study of chemically specific tip–surface interactions and the chemical imaging of surface functional groups. Langmuir 13:4357–4368

    Article  Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010097). We thank all of the members of the Department of Chemical Engineering, Seoul National University of Technology, for help and valuable discussions. We thank Prof. I. S. Yoo at Kyungwon University and Prof. D. J. Ahn, Dr. G. S. Lee, Mr. H. Choi and Mr. C. S. Choi at Korea University for valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JW. First-Leaflet Phase Effect on Properties of Phospholipid Bilayer Formed Through Vesicle Adsorption on LB Monolayer. J Membrane Biol 237, 107–114 (2010). https://doi.org/10.1007/s00232-010-9311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9311-0

Keywords

Navigation