Skip to main content
Log in

Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and Gene Electrotransfer

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Gene electrotransfer is a promising nonviral method that enables transfer of plasmid DNA into cells with electric pulses. Although many in vitro and in vivo studies have been performed, the question of the implied gene electrotransfer mechanisms is largely open. The main obstacle toward efficient gene electrotransfer in vivo is relatively poor mobility of DNA in tissues. Since cells are mechanically coupled to their extracellular environment and act differently compared to standard in vitro conditions, we developed a three-dimensional (3-D) in vitro model of CHO cells embedded in collagen gel as an ex vivo model of tissue to study electropermeabilization and different parameters of gene electrotransfer. For this purpose, we first used propidium iodide to detect electropermeabilization of CHO cells embedded in collagen gel. Then, we analyzed the influence of different concentrations of plasmid DNA and pulse duration on gene electrotransfer efficiency. Our results revealed that even if cells in collagen gel can be efficiently electropermeabilized, gene expression is significantly lower. Gene electrotransfer efficiency in our 3-D in vitro model had similar dependence on concentration of plasmid DNA and pulse duration comparable to in vivo studies, where longer (millisecond) pulses were shown to be more optimal compared to shorter (microsecond) pulses. The presented results demonstrate that our 3-D in vitro model resembles the in vivo situation more closely than conventional 2-D cell cultures and, thus, provides an environment closer to in vivo conditions to study mechanisms of gene electrotransfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  • Andre F, Gehl J, Sersa G et al (2008) Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther 19:1261–1271

    Article  CAS  PubMed  Google Scholar 

  • Andreason GL, Evans GA (1989) Optimization of electroporation for transfection of mammalian cell lines. Anal Biochem 180:269–275

    Article  CAS  PubMed  Google Scholar 

  • Barralet JE, Wang L, Lawson M et al (2005) Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 16:515–519

    Article  CAS  PubMed  Google Scholar 

  • Bernstein P, Dong M, Corbeil D et al (2009) Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol Prog 25:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Bettan M, Ivanov MA, Mir LM et al (2000) Efficient DNA electrotransfer into tumors. Bioelectrochemistry 52:83–90

    Article  CAS  PubMed  Google Scholar 

  • Bureau MF, Gehl J, Deleuze V et al (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359

    CAS  PubMed  Google Scholar 

  • Byrne CM, Thompson JF (2006) Role of electrochemotherapy in the treatment of metastatic melanoma and other metastatic and primary skin tumors. Expert Rev Anticancer Ther 6:671–678

    Article  CAS  PubMed  Google Scholar 

  • Canatella PJ, Black MM, Bonnichsen DM et al (2004) Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments. Biophys J 86:3260–3268

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Sersa G, Wilson J et al (2002) Effective gene transfer to solid tumors using different nonviral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector. Cancer Gene Ther 9:399–406

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Golzio M, Sersa G et al (2006) Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr Pharm Des 12:3817–3825

    Article  CAS  PubMed  Google Scholar 

  • Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38:211–218

    Article  CAS  PubMed  Google Scholar 

  • Cotten M, Wagner E (1993) Non-viral approaches to gene therapy. Curr Opin Biotechnol 4:705–710

    Article  CAS  PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Curiel DT, Agarwal S, Wagner E et al (1991) Adenovirus enhancement of transferring-polylysine-mediated gene delivery. Proc Natl Acad Sci USA 88:8850–8854

    Article  CAS  PubMed  Google Scholar 

  • Drury L (1996) Transformation of bacteria by electroporation. Methods Mol Biol 58:249–256

    CAS  PubMed  Google Scholar 

  • Ganeva V, Galutzov B, Teissie J (1995) Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level. Biochim Biophys Acta 1240:229–236

    Article  PubMed  Google Scholar 

  • Gehl J, Mir LM (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun 261:377–380

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Harkin DG, Hay ED (1996) Effects of electroporation on the tubulin cytoskeleton and directed migration of corneal fibroblasts cultured within collagen matrices. Cell Motil Cytoskeleton 35:345–357

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Jaroszeski M, Atkin A et al (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228

    Article  CAS  PubMed  Google Scholar 

  • Hindie M, Vayssade M, Dufresne M et al (2006) Interactions of B16F10 melanoma cells aggregated on a cellulose substrate. J Cell Biochem 99:96–104

    Article  CAS  PubMed  Google Scholar 

  • Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Aoki Y, Sugaya S et al (1999) Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Hum Gene Ther 10:947–955

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer—a review. Breast Cancer Res Treat 85:281–291

    Article  PubMed  Google Scholar 

  • Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  CAS  PubMed  Google Scholar 

  • Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286:2244–2245

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Beravs K, Semrov D et al (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Belehradek M, Domenge C et al (1991) Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III 313:613–618

    CAS  PubMed  Google Scholar 

  • Mir LM, Glass LF, Sersa G et al (1998) Effective treatment of cutaneous and subcutaneous malignant tumors by electrochemotherapy. Br J Cancer 77:2336–2342

    CAS  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Gehl J et al (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  CAS  PubMed  Google Scholar 

  • Muller KJ, Sukhorukov VL, Zimmermann U (2001) Reversible electropermeabilization of mammalian cells by high-intensity, ultra-short pulses of submicrosecond duration. J Membr Biol 184:161–170

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 7:841–845

    Google Scholar 

  • Nishi T, Yoshizato K, Yamashiro S et al (1996) High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res 56:1050–1055

    CAS  PubMed  Google Scholar 

  • Ong SY, Dai H, Leong KW (2006) Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials 27:4087–4097

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Flisar K, Kandušer M (2010) The role of electrophoresis in gene electrotransfer. J Membr Biol. doi:10.1007/s00232-010-9276-z

  • Potter H (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174:361–373

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Delteil C, Golzio M et al (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S, Bureau MF, Puc M et al (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S, Andre F, Bureau MF et al (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 16:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Sersa G (2006) The state-of-the-art of electrochemotherapy before the ESOPE study: advantages and clinical uses. Eur J Cancer Suppl 4:52–59

    Article  Google Scholar 

  • Sersa G, Stabuc B, Cemazar M et al (2000) Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin Cancer Res 6:863–867

    CAS  PubMed  Google Scholar 

  • Simoes S, Slepushkin V, Gaspar R et al (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusogenic peptides. Gene Ther 5:955–964

    Article  CAS  PubMed  Google Scholar 

  • Simon JR (1993) Transformation of intact yeast cells by electroporation. Methods Enzymol 217:478–483

    Article  CAS  PubMed  Google Scholar 

  • Somiari S, Glasspool-Malone J, Drabick JJ et al (2000) Theory and in vivo application of electroporative gene delivery. Mol Ther 2:178–187

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov VL, Reuss R, Zimmermann D et al (2005) Surviving high-intensity field pulses: strategies for improving robustness and performance of electrotransfection and electrofusion. J Membr Biol 206:187–201

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi WB, Cashmore AR (1997) Plant cell transfection by electroporation. Methods Mol Biol 62:453–462

    CAS  PubMed  Google Scholar 

  • Tevz G, Pavlin D, Kamensek U et al (2008) Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat 7:91–101

    CAS  PubMed  Google Scholar 

  • Titomirov A, Sukarev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–134

    CAS  PubMed  Google Scholar 

  • Ušaj M, Trontelj K, Miklavčič D, Kandušer M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese hamster ovary (CHO) cells. J Membr Biol. doi:10.1007/s00232-010-9272-3

  • Vienken J, Zimmermann U (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett 182:278–280

    Article  CAS  PubMed  Google Scholar 

  • Wagner E, Plank C, Zatloukal K et al (1992) Influenza virus hemagglutinin HA-2N-terminal fusogenic peptides augment gene transfer by transferring-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 89:7934–7938

    Article  CAS  PubMed  Google Scholar 

  • Wasungu L, Escoffre JM, Valette A et al (2009) A 3D in vitro spheroid model as a way to study the mechanisms of electroporation. Int J Pharm 379:278–284

    Article  CAS  PubMed  Google Scholar 

  • Wolf H, Rols MP, Boldt E et al (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531

    Article  CAS  PubMed  Google Scholar 

  • Zaharoff DA, Yuan F (2004) Effects of pulse strength and pulse duration on in vitro DNA electromobility. Bioelectrochemistry 62:37–45

    Article  CAS  PubMed  Google Scholar 

  • Zaharoff DA, Barr RC, Li CY et al (2002) Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Ther 9:1286–1290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojca Pavlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberl, S., Pavlin, M. Use of Collagen Gel as a Three-Dimensional In Vitro Model to Study Electropermeabilization and Gene Electrotransfer. J Membrane Biol 236, 87–95 (2010). https://doi.org/10.1007/s00232-010-9280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9280-3

Keywords

Navigation