Skip to main content
Log in

Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and Annihilation

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electropermeabilization, an electric field-induced modification of the barrier functions of the cell membrane, is widely used in laboratories and increasingly in the clinic; but the mechanisms and physical structures associated with the electromanipulation of membrane permeability have not been definitively characterized. Indirect experimental observations of electrical conductance and small molecule transport as well as molecular dynamics simulations have led to models in which hydrophilic pores form in phospholipid bilayers with increased probability in the presence of an electric field. Presently available methods do not permit the direct, nanoscale examination of electroporated membranes that would confirm the existence of these structures. To facilitate the reconciliation of poration models with the observed properties of electropermeabilized lipid bilayers and cell membranes, we propose a scheme for characterizing the stages of electropore formation and resealing. This electropore life cycle, based on molecular dynamics simulations of phospholipid bilayers, defines a sequence of discrete steps in the electric field-driven restructuring of the membrane that leads to the formation of a head group-lined, aqueous pore and then, after the field is removed, to the dismantling of the pore and reassembly of the intact bilayer. Utilizing this scheme we can systematically analyze the interactions between the electric field and the bilayer components involved in pore initiation, construction and resealing. We find that the pore creation time depends strongly on the electric field gradient across the membrane interface and that the pore annihilation time is at least weakly dependent on the magnitude of the pore-initiating electric field and, in general, much longer than the pore creation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordik LV et al (1979) Electric breakdown of bilayer lipid-membranes. 1. Main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  CAS  Google Scholar 

  • Benz R, Zimmermann U (1980) Pulse-length dependence of the electrical breakdown in lipid bilayer-membranes. Biochim Biophys Acta 597:637–642

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, the Netherlands, pp 331–342

    Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF et al (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  CAS  PubMed  Google Scholar 

  • Bockmann RA, de Groot BL, Kakorin S et al (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV et al (1988) Reversible electrical breakdown of lipid bilayers—formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Gurtovenko AA, Vattulainen I (2009) Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues. J Chem Phys 130:215107

    Article  PubMed  Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms. 2. Mechanism of action of lethal effect. Biochim Biophys Acta 148:789–800

    CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Kucerka N, Marquardt D, Harroun TA et al (2009) The functional significance of lipid diversity: orientation of cholesterol in bilayers is determined by lipid species. J Am Chem Soc 131:16358

    Article  CAS  PubMed  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Gehl J et al (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • Neumann E, Schaeferridder M, Wang Y et al (1982) Gene-transfer into mouse lyoma cells by electroporation in high electric-fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  • Okuno Y, Minagawa M, Matsumoto H et al (2009) Simulation study on the influence of an electric field on water evaporation. J Mol Struct 904:83–90

    CAS  Google Scholar 

  • Popescu D, Rucareanu C, Victor G (1991) A model for the appearance of statistical pores in membranes due to self oscillations. Bioelectrochem Bioenerg 25:91–103

    Article  Google Scholar 

  • Rols MP, Teissie J (1990) Electropermeabilization of mammalian cells—quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Teissie J (1992) Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1111:45–50

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Coulet D, Teissie J (1992) Highly efficient transfection of mammalian cells by electric-field pulses—application to large volumes of cell culture by using a flow system. Eur J Biochem 206:115–121

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE et al (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta Biomembr 1778:2308–2317

    Article  CAS  Google Scholar 

  • Sugar IP, Neumann E (1984) Stochastic model for electric field-induced membrane pores. Electroporation Biophys Chem 19:211–225

    Article  CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    CAS  PubMed  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta Biomembr 1331:235–270

    CAS  Google Scholar 

  • Tieleman DP, Leontiadou H, Mark AE et al (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383

    Article  CAS  PubMed  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10:754–768

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Weaver JC, Mintzer RA (1981) Decreased bilayer stability due to transmembrane potentials. Phys Lett A 86:57–59

    Article  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Peter Tieleman for stimulating discussions and insightful input. Computing resources were provided by the USC Center for High Performance Computing and Communications. This work was made possible in part by the Air Force Office of Scientific Research and by MOSIS, Information Sciences Institute, Viterbi School of Engineering, University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas Vernier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, Z.A., Vernier, P.T. Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and Annihilation. J Membrane Biol 236, 27–36 (2010). https://doi.org/10.1007/s00232-010-9277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9277-y

Keywords

Navigation