Skip to main content
Log in

Electrochemotherapy of Mouse Sarcoma Tumors Using Electric Pulse Trains with Repetition Frequencies of 1 Hz and 5 kHz

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electrochemotherapy is an efficient local treatment of tumors that combines administration of a chemotherapeutic drug with the subsequent application of electric pulses to the tumor. Although no difference in clinical response of the treated tumors to the electrochemotherapy when using 1 Hz or 5 kHz repetition frequency was observed, it is mandatory to be aware of possible differences in the effectiveness of electrochemotherapy when using suboptimal doses of the drugs. Therefore, this study compares the antitumor effectiveness of electrochemotherapy using electric pulse trains with repetition frequencies of 1 Hz and 5 kHz at suboptimal drug doses of bleomycin or cisplatin. Electrochemotherapy of fibrosarcoma SA-1 subcutaneous tumors transplanted in A/J mice resulted in good antitumor effectiveness, but antitumor effectiveness was significantly better at 1 Hz repetition frequency than at 5 kHz. The platinum content was higher in tumors treated with a 1 Hz repetition frequency. The application of electric pulses to the tumors at a 5 kHz repetition frequency induced an immediate reduction in tumor perfusion, comparable to the reduction at 1 Hz but with faster reperfusion. The greater effectiveness of electrochemotherapy using electric pulse trains of 1 Hz compared to 5 kHz is due to the greater electroporative effect and longer time in which electroporated tumors are exposed to the two chemotherapeutic drugs. These differences are observed at suboptimal drug doses, whereas at optimal drug doses of bleomycin or cisplatin the antitumor effectiveness is the same, as demonstrated in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Belehradek JJ, Orlowski S, Ramirez LH et al (1994) Electropermeabilization of cells and tissues assessed by the quantitative and qualitative electroloading of bleomycin. Biochim Biophys Acta 1190:155–163

    Article  CAS  PubMed  Google Scholar 

  • Byrne CM, Thompson JF (2006) Role of electrochemotherapy in the treatment of metastatic melanoma and other metastatic and primary skin tumors. Expert Rev Anticancer Ther 6:671–678

    Article  CAS  PubMed  Google Scholar 

  • Campana LG, Mocellin S, Basso M et al (2009) Bleomycin-based electrochemotherapy: clinical outcome from a single institution’s experience with 52 patients. Ann Surg Oncol 16:191–199

    Article  PubMed  Google Scholar 

  • Cemazar M, Milacic R, Miklavcic D et al (1998) Intratumoral cisplatin administration in electrochemotherapy: antitumor effectiveness, sequence dependence and platinum content. Anticancer Drugs 9:525–530

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Miklavcic D, Scancar J et al (1999) Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. Br J Cancer 79:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Engstrom PE, Persson BR, Salford LG (1999) Studies of in vivo electropermeabilization by gamma camera measurements of (99 m)Tc-DTPA. Biochim Biophys Acta 1473:321–328

    CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    Article  CAS  PubMed  Google Scholar 

  • Gehl J, Skovsgaard T, Mir LM (2002) Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569:51–58

    CAS  PubMed  Google Scholar 

  • Gilbert RA, Jaroszeski MJ, Heller R (1997) Novel electrode design for electrochemotherapy. Biochim Biophys Acta 1334:9–14

    CAS  PubMed  Google Scholar 

  • Larkin JO, Collins CG, Aarons S et al (2007) Electrochemotherapy. Aspects of preclinical development and early clinical experience. Ann Surg 245:469–479

    Article  PubMed  Google Scholar 

  • Macek Lebar A, Sersa G, Kranjc S et al (2002) Optimization of pulse parameters in vitro for in vivo electrochemotherapy. Anticancer Res 22:1731–1736

    Google Scholar 

  • Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 4:3–13

    CAS  Google Scholar 

  • Miklavcic D, Beravs K, Semrov D et al (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Pucihar G, Pavlovec M et al (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Corovic S, Pucihar G et al (2006) Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC Suppl 4:45–51

    Google Scholar 

  • Milacic R, Cemazar M, Sersa G (1997) Determination of platinum in tumor tissue after cisplatin therapy by electrothermal atomic absorption spectrometry. J Pharm Biomed Anal 16:343–348

    Article  CAS  PubMed  Google Scholar 

  • Mir LM (2006) Bases and rationale of the electrochemotherapy. EJC Suppl 4:38–44

    Google Scholar 

  • Mir LM, Orlowski S, Belehradek JJ et al (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Riddler M, Wang Y et al (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  • Pucihar G, Mir LM, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57:167–172

    Article  CAS  PubMed  Google Scholar 

  • Quaglino P, Mortera C, Osella-Abate S et al (2008) Electrochemotherapy with intravenous bleomycin in the local treatment of skin melanoma metastases. Ann Surg Oncol 15:2215–2222

    Article  CAS  PubMed  Google Scholar 

  • Ramirez LH, Orlowski S, An D et al (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111

    CAS  PubMed  Google Scholar 

  • Satkauskas S, Batiuskaite D, Salomskaite-Davalgiene S et al (2005) Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration. Bioelectrochemistry 65:105–111

    Article  CAS  PubMed  Google Scholar 

  • Sersa G (2006) The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. EJC Suppl 4:52–59

    Google Scholar 

  • Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455

    CAS  PubMed  Google Scholar 

  • Sersa G, Cemazar M, Miklavcic D et al (1999a) Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res 19:4017–4022

    CAS  PubMed  Google Scholar 

  • Sersa G, Cemazar M, Parkins CS et al (1999b) Tumor blood flow changes induced by application of electric pulses. Eur J Cancer 35:672–677

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Jarm T, Kotnik T et al (2008a) Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 98:388–398

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Miklavcic D, Cemazar M et al (2008b) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240

    CAS  PubMed  Google Scholar 

  • Snoj M, Cemazar M, Slekovec Kolar B et al (2007) Effective treatment of multiple unresectable skin melanoma metastases by electrochemotherapy. Croat Med J 48:91–95

    Google Scholar 

  • Teissie J, Escoffre JM, Pierre Rols M et al (2008) Time dependent field effects on cell membranes. A review for critical selection of pulse duration for therapeutic applications. Radiol Oncol 42:196–206

    Article  Google Scholar 

  • Vernhes MC, Cabanes PA, Teissie J (1999) Chinese hamster ovary cells sensitive to localized electric stress. Bioelectrochem Bioenerg 48:17–25

    Article  CAS  PubMed  Google Scholar 

  • Zupanic A, Ribaric S, Miklavcic D (2007) Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma 54:246–250

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the state budget of the Slovenian Research Agency (programme P3-0003, project J3-7044) and the EU-funded project ESOPE (QLK-2002-02003). We thank Prof. Damijan Miklavcic and Prof. Eberhard Neumann for their useful comments and criticism of the manuscript during its preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sersa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sersa, G., Kranjc, S., Scancar, J. et al. Electrochemotherapy of Mouse Sarcoma Tumors Using Electric Pulse Trains with Repetition Frequencies of 1 Hz and 5 kHz. J Membrane Biol 236, 155–162 (2010). https://doi.org/10.1007/s00232-010-9268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9268-z

Keywords

Navigation