Skip to main content
Log in

Fish Oil and Antipsychotic Drug Risperidone Modulate Oxidative Stress in PC12 Cell Membranes Through Regulation of Cytosolic Calcium Ion Release and Antioxidant System

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Oxidative stress is a critical route of damage in various psychological disorders such as schizophrenia, although fish oil and risperidone (RISP) induce antioxidant effects in the human body. However, the mechanisms behind these effects remain elusive. We investigated the effects of fish oil and RISP in the PC12 cell line by evaluating Ca2+ mobilization, lipid peroxidation (LP) and antioxidant levels. PC12 cells were divided into eight flasks: control, fish oil, RISP, H2O2, fish oil + H2O2, RISP + H2O2, fish oil + RISP and fish oil + RISP + H2O2. Cells were incubated with fish oil and RISP for 24 and 48 h, respectively. Then, cells were exposed to H2O2 for 15 min before analysis. Ca2+ release and LP levels were higher in the H2O2 group than in the control, RISP and fish oil groups, although their levels were decreased by incubation of cells in fish oil and RISP. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in the H2O2 group than in the control, RISP and fish oil groups, although levels were higher in cells incubated with fish oil and RISP than in those in the H2O2 groups. In conclusion, these results indicate that RISP and fish oil induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ release and antioxidant levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPUFA:

Essential polyunsaturated fatty acid

GSH:

Reduced glutathione

GSH-Px:

Glutathione peroxidase

LP:

Lipid peroxidation

RISP:

Risperidone

PLA2 :

Phopsholipase A2

PC12:

Rat pheochromocytoma-derived cell line

References

  • Akan P, Kızıldağ S, Ormen M, Genc S, Öktem MA, Fadıllıoğlu M (2009) Pregnenolone protects the PC12 cell line against amyloid beta peptide toxicity but its sulfate ester does not. Chem Biol Interact 177:65–70

    Article  CAS  PubMed  Google Scholar 

  • Akyol O, Herken H, Uz E, Fadillioglu E, Unal S, Sogut S, Ozyurt H, Savas HA (2002) The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry 26:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Arab K, Rossary A (2006) Docosahexaenoic acid enhances the antioxidant response of human fibroblasts by upregulating gama-glutamyl-cysteinly ligase and glutathione reductase. Br J Nutr 95:18–26

    Article  CAS  PubMed  Google Scholar 

  • Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204

    Article  PubMed  Google Scholar 

  • Bai O, Wei Z, Lu W (2002) Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawal. J Neurosci Res 69:278–283

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Laifenfeld D (2004) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 59:273–296

    Article  CAS  PubMed  Google Scholar 

  • Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51

    Article  CAS  PubMed  Google Scholar 

  • Bubber P, Tang J, Haroutunian V, Xu H, Davis KL, Blass JP, Gibson GE (2004) Mitochondrial enzymes in schizophrenia. J Mol Neurosci 24:315–321

    Article  CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska A, Rabe-Jabłońska J, Olas B (2010) The effects of the second generation antipsychotics and a typical neuroleptic on collagen-induced platelet aggregation in vitro. World J Biol Psychiatry 11(2 Pt 2):293–299

    Article  PubMed  Google Scholar 

  • Eren I, Nazıroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripirazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Espino J, Mediero M, Bejarano I, Lozano GM, Ortiz A, García JF, Rodríguez AB, Pariente JA (2009) Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients. Rep Biol Endocrinol 7:11

    Article  Google Scholar 

  • Greene LA, Tischer A (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells with respond to nerve growth factor. Proc Natl Acad Sci 73:2424–2428

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hajnóczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M (2006) Mitochondrial calcium signaling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Heemskerk JW, Feijge MA, Henneman L, Rosing J, Hemker HC (1997) The Ca2+-mobilizing potency of alpha-thrombin and thrombin receptor-activating peptide on human platelets concentration and time effects of thrombin-induced Ca2+ signalling. Eur J Biochem 249:547–555

    Article  CAS  PubMed  Google Scholar 

  • Herken H, Uz E, Ozyurt H, Söğüt S, Virit O, Akyol O (2001) Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 6:66–73

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF, Manku MS, Hillman H, Lain A, Glen M (1991) Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry 30:795–805

    Article  CAS  PubMed  Google Scholar 

  • Jagota SK, Dani HM (1982) A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal Biochem 127:178–182

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 158:360–369

    Article  CAS  PubMed  Google Scholar 

  • Keshavan MS, Mallinger AG, Pettegrew JW, Dippold C (1993) Erythrocyte membrane phospholipids in psychotic patients. Psychiatry Res 49:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kropp S, Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, Rüther E, Emrich HM, Schneider U, Bleich S (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci 17:227–231

    CAS  PubMed  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mahadik SP, Evans DR (2003) Is schizophrenia a metabolic brain disorder? Membrane phospholipid dysregulation and its therapeutic implications. Psychiatr Clin North Am 26:85–102

    Article  PubMed  Google Scholar 

  • Mahadik SP, Mukherjee S, Scheffer R, Correnti EE, Mahadik JS (1998) Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry 43:674–679

    Article  CAS  PubMed  Google Scholar 

  • Mahadik SP, Evans D, Lal H (2001) Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 25:463–493

    Article  CAS  PubMed  Google Scholar 

  • Nazıroğlu M (2007a) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2007b) Molecular mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L (ed) Reactive oxygen species and diseases. Research Signpost Press, Kerala, India, pp 239–256

    Google Scholar 

  • Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  Google Scholar 

  • Pillai A, Parikh V, Terry AV Jr, Mahadik SP (2007) Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41:372–386

    Article  PubMed  Google Scholar 

  • Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyldialdehyde) in biological fluids. Anal Biochem 16:359–364

    Article  CAS  PubMed  Google Scholar 

  • Putney JW, McKay RR (1999) Capacitative calcium entry. Bioesseys 21:38–46

    Article  Google Scholar 

  • Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122

    Article  CAS  PubMed  Google Scholar 

  • Reddy RD, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes and the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatr 30:409–412

    Article  CAS  Google Scholar 

  • Ross BM (2003) Phospholipid and eicosanoid signaling disturbances in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 69:407–412

    Article  CAS  PubMed  Google Scholar 

  • Sarandol A, Kirli S, Akkaya C, Altin A, Demirci M, Sarandol E (2007) Oxidative-antioxidative systems and their relation with serum S100 B levels in patients with schizophrenia: effects of short term antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 31:1164–1169

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  • Sivrioglu EY, Kirli S, Sipahioglu D, Gursoy B, Sarandöl E (2007) The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry 31:1493–1499

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213

    CAS  PubMed  Google Scholar 

  • Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase-3, -9 and calcium influx. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  • Wang H, Xu H, Dyck LE, Li X-M (2005) Olanzapine and quetiapine protects PC12 cells from β-amyloid peptides25–35-induced oxidative stress and the ensuing apoptosis. J Neurosci Res 81:572–580

    Article  CAS  PubMed  Google Scholar 

  • Whanger PD (2001) Selenium and the brain: a review. Nutr Neurosci 4:81–97

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP (1999) Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45:385–391

    Article  Google Scholar 

  • Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33:220–228

    Article  Google Scholar 

  • Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81:291–300

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. N. formulated the present hypothesis and was responsible for writing the report. S. A. and A. C. U. were responsible for data analyses. R. Ö. made critical revisions to the manuscript. The study was partially supported by the Scientific Research Unit of Suleyman Demirel University (protocol 1856-TU-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altınkılıç, S., Nazıroğlu, M., Uğuz, A.C. et al. Fish Oil and Antipsychotic Drug Risperidone Modulate Oxidative Stress in PC12 Cell Membranes Through Regulation of Cytosolic Calcium Ion Release and Antioxidant System. J Membrane Biol 235, 211–218 (2010). https://doi.org/10.1007/s00232-010-9267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9267-0

Keywords

Navigation