Skip to main content

Advertisement

Log in

Characterization of the Rapidly Activating Delayed Rectifier Potassium Current, I Kr, in HL-1 Mouse Atrial Myocytes

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

HL-1 is the adult murine cardiac cell line that can be passaged repeatedly in vitro without losing differentiated phenotype. The present study was designed to characterize the rapidly activating delayed rectifier potassium current, I Kr, endogenously expressed in HL-1 cells using the whole-cell patch-clamp technique. In the presence of nisoldipine, depolarizing voltage steps applied from a holding potential of −50 mV evoked the time-dependent outward current, followed by slowly decaying outward tail current upon return to the holding potential. The amplitude of the current increased with depolarizations up to 0 mV but then progressively decreased with further depolarizations. The time-dependent outward current as well as the tail current were highly sensitive to block by E-4031 and dofetilide (IC50 of 21.1 and 15.1 nM, respectively) and almost totally abolished by micromolar concentrations of each drug, suggesting that most of the outward current in HL-1 cells was attributable to I Kr. The magnitude of I Kr available from HL-1 cells (18.1 ± 1.5 pA pF−1) was sufficient for reliable measurements of various gating parameters. RT-PCR and Western blot analysis revealed the expression of alternatively spliced forms of mouse ether-a-go-go-related genes (mERG1), the full-length mERG1a and the N-terminally truncated mERG1b isoforms. Knockdown of mERG1 transcripts with small interfering RNA (siRNA) dramatically reduced I Kr amplitude, confirming the molecular link of mERG1 and I Kr in HL-1 cells. These findings demonstrate that HL-1 cells possess I Kr with properties comparable to those in native cardiac I Kr and provide an experimental model suitable for studies of I Kr channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott GW, Sesti F, Splawski I et al (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97:175–187

    Article  CAS  PubMed  Google Scholar 

  • Barajas-Martínez H, Elizalde A, Sánchez-Chapula JA (2000) Developmental differences in delayed rectifying outward current in feline ventricular myocytes. Am J Physiol 278:H484–H492

    Google Scholar 

  • Carmeliet E (1992) Voltage- and time-dependent block of the delayed K+ current in cardiac myocytes by dofetilide. J Pharmacol Exp Ther 262:809–817

    CAS  PubMed  Google Scholar 

  • Cavarra MS, del Mónaco SM, Assef YA et al (2007) HERG currents in native K562 leukemic cells. J Membr Biol 219:49–61

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Clark RB, Mangoni ME, Lueger A et al (2004) A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol 286:H1757–H1766

    CAS  Google Scholar 

  • Claycomb WC, Lanson NA Jr, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  Google Scholar 

  • Curran ME, Splawski I, Timothy KW et al (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803

    Article  CAS  PubMed  Google Scholar 

  • Delcarpio JB, Lanson NA Jr, Field LJ et al (1991) Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ Res 69:1591–1600

    CAS  PubMed  Google Scholar 

  • Field LJ (1988) Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 239:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Honjo H, Boyett MR, Kodama I et al (1996) Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol 496:795–808

    CAS  PubMed  Google Scholar 

  • Jones EM, Roti Roti EC, Wang J et al (2004) Cardiac IKr channels minimally comprise hERG 1a and 1b subunits. J Biol Chem 279:44690–44694

    Article  CAS  PubMed  Google Scholar 

  • Lees-Miller JP, Kondo C, Wang L et al (1997) Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. Circ Res 81:719–726

    CAS  PubMed  Google Scholar 

  • Lei M, Honjo H, Kodama I et al (2001) Heterogeneous expression of the delayed-rectifier K+ currents iK, r and iK, s in rabbit sinoatrial node cells. J Physiol 535:703–714

    Article  CAS  PubMed  Google Scholar 

  • Liu DW, Antzelevitch C (1995) Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res 76:351–365

    CAS  PubMed  Google Scholar 

  • Liu Y, Taffet SM, Anumonwo JM et al (1994) Characterization of an E4031-sensitive potassium current in quiescent AT-1 cells. J Cardiovasc Electrophysiol 5:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Rasmusson RL, Campbell DL et al (1996) Activation and inactivation kinetics of an E-4031-sensitive current from single ferret atrial myocytes. Biophys J 70:2704–2715

    Article  CAS  PubMed  Google Scholar 

  • London B, Trudeau MC, Newton KP et al (1997) Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ Res 81:870–878

    CAS  PubMed  Google Scholar 

  • Matsuura H, Ehara T, Ding WG et al (2002) Rapidly and slowly activating components of delayed rectifier K+ current in guinea-pig sino-atrial node pacemaker cells. J Physiol 540:815–830

    CAS  PubMed  Google Scholar 

  • McDonald TV, Yu Z, Ming Z et al (1997) A minK-HERG complex regulates the cardiac potassium current I Kr. Nature 388:289–292

    Article  CAS  PubMed  Google Scholar 

  • McWhinney CD, Hansen C, Robishaw JD (2000) Alpha-1 adrenergic signaling in a cardiac murine atrial myocyte (HL-1) cell line. Mol Cell Biochem 214:111–119

    Article  CAS  PubMed  Google Scholar 

  • Morais Cabral JH, Lee A, Cohen SL et al (1998) Crystal structure and functional analysis of the HERG potassium channel N-terminus: a eukaryotic PAS domain. Cell 95:649–655

    Article  CAS  PubMed  Google Scholar 

  • Neilan CL, Kenyon E, Kovach MA et al (2000) An immortalized myocyte cell line, HL-1, expresses a functional δ-opioid receptor. J Mol Cell Cardiol 32:2187–2193

    Article  CAS  PubMed  Google Scholar 

  • Niwa N, Yasui K, Opthof T et al (2004) Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol 286:H2257–H2263

    CAS  Google Scholar 

  • Ono K, Ito H (1995) Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. Am J Physiol 269:H453–H462

    CAS  PubMed  Google Scholar 

  • Phartiyal P, Jones EMC, Robertson GA (2007) Heteromeric assembly of human ether-à-go-go-related gene (hERG) 1a/1b channels occurs cotransfectionally via N-terminal interactions. J Biol Chem 282:9874–9882

    Article  CAS  PubMed  Google Scholar 

  • Pond AL, Scheve BK, Benedict AT et al (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I Kr channels. J Biol Chem 275:5997–6006

    Article  CAS  PubMed  Google Scholar 

  • Roden DM, Lazzara R, Rosen M et al (1996) Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 94:1996–2012

    CAS  PubMed  Google Scholar 

  • Sale H, Wang J, O’Hara TJ et al (2008) Physiological properties of hERG 1a/1b heteromeric currents and a hERG 1b-specific mutation associated with long-QT syndrome. Circ Res 103:e81–e95

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME et al (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Sartiani L, Bochet P, Cerbai E et al (2002) Functional expression of the hyperpolarization-activated, non-selective cation current I f in immortalized HL-1 cardiomyocytes. J Physiol 545:81–92

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki T (1987) Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol 387:227–250

    CAS  PubMed  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  CAS  PubMed  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B et al (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Duff HJ (1996) Identification and characteristics of delayed rectifier K+ current in fetal mouse ventricular myocytes. Am J Physiol 270:H2088–H2093

    CAS  PubMed  Google Scholar 

  • Wang L, Feng ZP, Kondo CS et al (1996) Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 79:79–85

    CAS  PubMed  Google Scholar 

  • Weerapura M, Nattel S, Chartier D et al (2002) A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link? J Physiol 540:15–27

    Article  CAS  PubMed  Google Scholar 

  • White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol 286:H823–H829

    CAS  Google Scholar 

  • Xia M, Salata JJ, Figueroa DJ et al (2004) Functional expression of L- and T-type Ca2+ channels in murine HL-1 cells. J Mol Cell Cardiol 36:111–119

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Roden DM (1996) Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. Circulation 93:407–411

    CAS  PubMed  Google Scholar 

  • Yang T, Wathen MS, Felipe A et al (1994) K+ currents and K+ channel mRNA in cultured atrial cardiac myocytes (AT-1 cells). Circ Res 75:870–878

    CAS  PubMed  Google Scholar 

  • Yang T, Kupershmidt S, Roden DM (1995) Anti-minK antisense decreases the amplitude of the rapidly activating cardiac delayed rectifier K+ current. Circ Res 77:1246–1253

    CAS  PubMed  Google Scholar 

  • Yang T, Snyders DJ, Roden DM (1997) Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res 80:782–789

    CAS  PubMed  Google Scholar 

  • Yasui K, Liu W, Opthof T et al (2001) I f current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88:536–542

    CAS  PubMed  Google Scholar 

  • Zankov DP, Yoshida H, Tsuji K et al (2009) Adrenergic regulation of the rapid component of delayed rectifier K+ current: implications for arrhythmogenesis in LQT2 patients. Heart Rhythm 6:1038–1046

    Article  PubMed  Google Scholar 

  • Zhou Z, Gong Q, Ye B et al (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science. We are grateful to Dr. W. C. Claycomb for providing HL-1 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Toyoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyoda, F., Ding, WG., Zankov, D.P. et al. Characterization of the Rapidly Activating Delayed Rectifier Potassium Current, I Kr, in HL-1 Mouse Atrial Myocytes. J Membrane Biol 235, 73–87 (2010). https://doi.org/10.1007/s00232-010-9257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9257-2

Keywords

Navigation