Skip to main content
Log in

Formation of Two Different Types of Ion Channels by Amphotericin B in Human Erythrocyte Membranes

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (≤1.0 × 10−6 M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 × 10−6 M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft–associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen R, Melchionna S, Hansen J-P (2002) Intermittent permeation of cylindrical nanopores by water. Phys Rev Lett 89:175502–175504

    Article  PubMed  Google Scholar 

  • Archer DB (1976) Effect of the lipid composition of Mycoplasma mycoides subspecies capri and phosphatidyl choline vesicles upon the action of polyene antibiotics. Biochim Biophys Acta 436:68–76

    Article  PubMed  CAS  Google Scholar 

  • Barenholz Y (2002) Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog Lipid Res 41:1–5

    Article  PubMed  CAS  Google Scholar 

  • Beckstein O, Sansom MSP (2004) The influence of geometry, surface character and flexibility on the permeation of ions and water though biological pores. Phys Biol 1:42–52

    Article  PubMed  CAS  Google Scholar 

  • Boda D, Valisko M, Eisenberg B, Nonner W, Henderson D, Gillespie D (2007) Combined effects of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Phys Rev Lett 98:168102–168104

    Article  PubMed  Google Scholar 

  • Bolard J, Legrand P, Heitz F, Cybulska B (1991) One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry 30:5707–5715

    Article  PubMed  CAS  Google Scholar 

  • Cass A, Finkelstein A, Krespi V (1970) The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56:100–124

    Article  PubMed  CAS  Google Scholar 

  • Ciana A, Balduini C, Minetti G (2005) Detergent-resistance membranes in human erythrocytes and their connection to the membrane skeleton. J Biosci 30:317–328

    Article  PubMed  CAS  Google Scholar 

  • Cohen BE (1975) The permeability of liposomes to non-electrolytes. II. The effect of nystatin and gramicidin A. J Membr Biol 20:235–260

    Article  PubMed  CAS  Google Scholar 

  • Cohen BE (1992) A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Biochim Biophys Acta 1108:49–58

    Article  PubMed  CAS  Google Scholar 

  • Cohen BE (1998) Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharmaceutics 162:95–106

    Article  CAS  Google Scholar 

  • Coutinho A, Silva L, Fedorov A, Prieto M (2004) Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys J 87:3264–3276

    Article  PubMed  CAS  Google Scholar 

  • Crepaldi Domingues C, Ciana A, Buttafava A, Balduini C, De Paula E, Minetti G (2009) Resistance of human erythrocyte membranes to triton X-100 and C12E6. J Membr Biol 227:39–48

    Article  PubMed  CAS  Google Scholar 

  • Cybulska B, Herve M, Borowski E, Gary-Bobo CM (1986) Effect of the polar head structure of polyene macrolide antifungal antibiotics on the mode of permeabilization of ergosterol- and cholesterol-containing lipidic vesicles studied by 31P-NMR. Mol Pharmacol 29:293–298

    PubMed  CAS  Google Scholar 

  • Cybulska B, Bolard J, Seksek O, Czerwinski A, Borowski E (1995) Identification of the structural elements of amphotericin B and other macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane. Biochim Biophys Acta 1240:167–178

    Article  PubMed  Google Scholar 

  • Czub J, Baginski M (2006) Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys J 90:2368–2382

    Article  PubMed  CAS  Google Scholar 

  • De Kruijff B, Demel RA (1974) Polyene antibiotic–sterol interactions in membranes of Acholesplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 339:57–70

    Article  PubMed  Google Scholar 

  • De Kruijff B, Gerritsen WJ, Oerlemanns A, Van Dick PW, Demel RA, Van Deenen LLM (1974) Polyene antibiotic–sterol interactions in membranes of Acholeplasma laidlawii cell and lecithin liposomes. II. Temperature dependence of the polyene antibiotic–sterol complex formation. Biochim Biophys Acta 339:44–56

    Article  PubMed  Google Scholar 

  • Deuticke B, Zollner C (1972) Lack of influence of membrane cholesterol on anion and nonelectrolyte permeability of pig erythrocytes. Biochim Biophys Acta 266:726–731

    Article  PubMed  CAS  Google Scholar 

  • Deuticke B, Kim M, Zollner C (1973) The influence of amphotericin B on the permeability of mammalian erythrocytes to nonelectrolytes, anions and cations. Biochim Biophys Acta 318:345–359

    Article  CAS  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochim Biophys 100:119–130

    Article  CAS  Google Scholar 

  • Drabkin DL, Austin JH (1932) Spectroscopy studies. I. Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  • Ernst C, Lematre J, Tinnert H, Dupont G, Grange J (1979) Interaction between an antifungal heptaene, amphotericin B and cholesterol in vitro, as detected by circular dichroism and absorption. Influence of temperature. C R Seances Acad Sci D 289:1145–1149

    PubMed  CAS  Google Scholar 

  • Finkelstein A, Holz R (1973) Aqueous pores created in thin lipid membranes by the polyene antibiotic nystatin and amphotericin B. In: Eisenman G (ed) Membranes, vol 2. Marcel Deckker, New York, pp 377–408

    Google Scholar 

  • Galla H-J, Luisfetti J (1980) Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Biochim Biophys Acta 596:106–117

    Google Scholar 

  • Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12:308–329

    PubMed  CAS  Google Scholar 

  • Grzybeck M, Chorzlska A, Bok E, Hryniewicz A, Czogalla A, Diakowski W, Sikorski AF (2006) Spectrin–phospholipid interactions. Existence of multiple kinds of binding sites? Chem Phys Lipids 141:133–141

    Article  Google Scholar 

  • Haest CWM, Plasa G, Kamp D, Deuticke B (1978) Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 509:21–32

    Article  PubMed  CAS  Google Scholar 

  • Heinemann V, Bosse D, Jehn U, Kahny B, Wachholz K, Debus A, Scholz P, Kolb H-J, Wilmanns W (1997) Pharmacokinetics of liposomal amphotericin B (AmBisome) in critically ill patients. Antimicrob Agents Chemother 41:1275–1280

    PubMed  CAS  Google Scholar 

  • Hladky SB, Rink TJ (1976) Potential difference and the distribution of ions across the human red blood cell membrane: a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. J Physiol 263:287–319

    PubMed  CAS  Google Scholar 

  • Koumanov KS, Tessier C, Monchilova AB, Rainteau D, Wolf C, Quinn PJ (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochim Biophys 434:150–158

    Article  CAS  Google Scholar 

  • Labonia WD, Morelli OH Jr, Gimenez MI, Freuler PV, Morelli OH (1987) Effects of l-carnitine on sodium transport in erythrocytes from dialyzed uremic patients. Kidney Int 32:754–759

    Article  PubMed  CAS  Google Scholar 

  • Laemmli WK (1970) Cleavage of structural proteins during the assembly of the head by bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lambing HE, Wolf WD, Hartsel SC (1993) Temperature effects on the aggregation state and activity of amphotericin B. Biochim Biophys Acta 1152:185–188

    Article  PubMed  CAS  Google Scholar 

  • Lange Y, Ye J, Steck TL (2007) Scrambling of phospholipids activates red cell membrane cholesterol. Biochemistry 46:2233–2238

    Article  PubMed  CAS  Google Scholar 

  • Legrand P, Romero EA, Cohen BE, Bolard J (1992) Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother 36:2518–2522

    PubMed  CAS  Google Scholar 

  • Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ (2002) Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem 277:43399–43409

    Article  PubMed  CAS  Google Scholar 

  • Ohvo-Rekila H, Ramstedt B, Lppimaki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  CAS  Google Scholar 

  • Ramos H, Attias de Murciano A, Cohen BE, Bolard J (1989) The polyene antibiotic amphotericin B acts as a Ca2+ ionophore across sterol-containing liposomes. Biochim Biophys Acta 982:303–306

    Article  PubMed  CAS  Google Scholar 

  • Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen BE (1996) Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol 152:65–75

    Article  PubMed  CAS  Google Scholar 

  • Readio J, Bittman R (1972) Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim Biophys Acta 685:219–224

    Google Scholar 

  • Rogers PD, Kramer RE, Chapman SW, Cleary JD (1999) Amphotericin B-induced interleukin-1beta expression in human monocyte cells is calcium and calmodulin dependent. J Infect Dis 180:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Romero PJ, Romero EA (1997) Differences in Ca2+ pumping activity between sub-populations of human red cells. Cell Calcium 21:353–358

    Article  PubMed  CAS  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97:1141–1143

    Article  PubMed  CAS  Google Scholar 

  • Shvinka N, Caffier G (1994) Cation conductance and efflux induced by polyene antibiotics in the membrane of skeletal muscle fiber. Biophys J 67:143–152

    Article  PubMed  CAS  Google Scholar 

  • Silva L, Coutinho A, Fedorova A, Prieto M (2006) Competitive binding of cholesterol and ergosterol to the polyene antibiotic nystatin. A fluorescent study. Biophys J 90:3625–3631

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Vaz WL (2004) Model systems, lipid rafts and cell membranes. Annu Rev Biophys Biomol Struc 33:269–295

    Article  CAS  Google Scholar 

  • Sundar S, Chakravarty J, Rai VK, Agrawal N, Singh SP, Chauhan V, Murray HW (2007) Amphotericin B treatment for Indian visceral leishmaniasis: response to 15 daily versus alternate-day infusions. Clin Infect Dis 45:556–561

    Article  PubMed  CAS  Google Scholar 

  • Szponarski W, Bolard J (1987) Temperature-dependent modes for the binding of the polyene amphotericin B to human erythrocyte membranes: a circular dichroism study. Biochim Biophys Acta 897:229–237

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KI, Ohnishi S (1976) Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis. Biochim Biophys Acta 426:218–231

    Article  PubMed  CAS  Google Scholar 

  • Van Hoogevest P, DeKruijff B (1978) Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. Biochim Biophys Acta 511:397–407

    Article  PubMed  Google Scholar 

  • Venegas V, Gonzalez-Damian J, Celis H, Ortega-Blake I (2003) Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 85:2323–2332

    Article  PubMed  CAS  Google Scholar 

  • Vertut-Doi A, Hannaert P, Bolard J (1988) The polyene antibiotic amphotericin B inhibits the Na+/K+ pump of human erythrocytes. Biochem Biophys Res Commun 157:692–697

    Article  PubMed  CAS  Google Scholar 

  • Wietzerbin J, Szponarski W, Gary-Bobo C (1990) Kinetic study of interaction between [14C] amphotericin B derivatives and human erythrocytes; relationship between binding and induced K+ leak. Biochim Biophys Acta 1026:93–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are indebted to Prof. Pedro J. Romero for providing access to the facilities and equipment of his laboratory at the Central University of Venezuela to perform the experiments with human erythrocytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Eleazar Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, E.A., Valdivieso, E. & Cohen, B.E. Formation of Two Different Types of Ion Channels by Amphotericin B in Human Erythrocyte Membranes. J Membrane Biol 230, 69–81 (2009). https://doi.org/10.1007/s00232-009-9187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9187-z

Keywords

Navigation